-
公开(公告)号:CN114596429B
公开(公告)日:2024-04-19
申请号:CN202210201369.3
申请日:2022-02-28
Applicant: 安徽大学
IPC: G06V10/20 , G06V10/24 , G06V10/774 , G06V10/764
Abstract: 本发明涉及一种基于自定义旋转框的麦穗检测方法,包括如下步骤:步骤S100,拍摄观测区群体麦穗图像;步骤S200,改进YoloV5目标检测网络的检测框定义方式和损失函数,获得基于自定义旋转框的YoloV5目标检测网络模型;步骤S300,对改进后的基于自定义旋转框的YoloV5目标检测网络模型进行训练;步骤S400,利用训练好的基于自定义旋转框的YoloV5目标检测网络模型对观测区群体麦穗图像进行检测,并获得利用旋转框框出的麦穗检测结果图像。本方法有效提高了小麦麦穗检测精度,且能够在任何复杂条件下使用,无需任何辅助设备(材料),拥有良好的泛用性。此外,有效解决了照片中因拍摄角度导致的检测框背景较多的情况,目标检测网络模型的角度检测精度也得到了提高。
-
公开(公告)号:CN114596429A
公开(公告)日:2022-06-07
申请号:CN202210201369.3
申请日:2022-02-28
Applicant: 安徽大学
IPC: G06V10/20 , G06V10/24 , G06V10/774 , G06V10/764 , G06K9/62
Abstract: 本发明涉及一种基于自定义旋转框的麦穗检测方法,包括如下步骤:步骤S100,拍摄观测区群体麦穗图像;步骤S200,改进YoloV5目标检测网络的检测框定义方式和损失函数,获得基于自定义旋转框的YoloV5目标检测网络模型;步骤S300,对改进后的基于自定义旋转框的YoloV5目标检测网络模型进行训练;步骤S400,利用训练好的基于自定义旋转框的YoloV5目标检测网络模型对观测区群体麦穗图像进行检测,并获得利用旋转框框出的麦穗检测结果图像。本方法有效提高了小麦麦穗检测精度,且能够在任何复杂条件下使用,无需任何辅助设备(材料),拥有良好的泛用性。此外,有效解决了照片中因拍摄角度导致的检测框背景较多的情况,目标检测网络模型的角度检测精度也得到了提高。
-