-
公开(公告)号:CN117371619A
公开(公告)日:2024-01-09
申请号:CN202311654631.0
申请日:2023-12-05
Applicant: 核工业北京地质研究院
Abstract: 本申请的实施例涉及采取综合技术手段进行勘探或探测,具体涉及一种对勘探区的砂岩型铀资源成矿远景预测方法,步骤如下:确定目标层的地质构造活动过程;获取沉积相展布特征,确定有利砂体在目标层的位置;根据有利砂体的位置以及地质构造活动过程,确定主要流体活动过程;获取成矿规律,确定控矿要素;确定目标层的控矿要素在地质构造活动过程以及主要流体活动过程中的演化特征;根据演化特征以及成矿规律,圈定成矿远景区;其中,地质构造活动过程包括地质构造活动形态和地质构造活动时间。本申请的实施例提供的预测方法不仅利用地质构造活动形态的三维因素,还利用地质构造活动时间的时间因素来实现预测,有利于提高成矿预测的准确性。
-
公开(公告)号:CN117313550A
公开(公告)日:2023-12-29
申请号:CN202311587780.X
申请日:2023-11-25
Applicant: 核工业北京地质研究院
Abstract: 本申请的实施例涉及利用综合手段对物质或物体进行勘探或探测,具体涉及一种基于模型的铀资源潜力预测方法,该方法包括如下步骤:收集模型区多元地学信息,对这些信息进行处理,建立模型区的多元地学信息数据库;根据铀成矿的预测类型,从铀成矿的属性中提取预测要素;基于预测要素,确定构建模型的预测变量;根据预测变量,构建用于模型的训练和验证的样本集;构建模型;利用样本集,对模型进行训练和验证,根据训练结果对模型进行调整,确定预测模型;利用预测模型,对研究区的铀资源进行预测和评价并输出结果。本申请的实施例提供的方法能够缩小找矿范围,提升找矿效率。
-
公开(公告)号:CN115825381A
公开(公告)日:2023-03-21
申请号:CN202211333217.5
申请日:2022-10-28
Applicant: 核工业北京地质研究院
Abstract: 本发明属于地质研究技术领域,具体公开了一种陆相红层成因判别方法,该方法包括:步骤(1)宏观观察区域上红层的沉积特点;步骤(2)微观观察:是否存在有机质;步骤(3)地球化学分析:对泥岩样品进行微量元素含量测定,并对砂岩样品进行X射线衍射分析;步骤(4)微量元素分析结果评定:计算微量元素的比值,判别沉积环境、古气候及氧化还原条件;步骤(5)砂岩X‑射线衍射全岩分析结果评定:分析粘土矿物的成份和含量,判断风化淋虑作用的强弱和环境介质的性质;步骤(6)综合评定:综合步骤(4)和步骤(5)判别结果,最终确定红层成因。本发明能够克服单因素评价红层成因的缺陷,更客观的判别陆相红层是原生沉积还是后生氧化。
-
公开(公告)号:CN115356467A
公开(公告)日:2022-11-18
申请号:CN202211276114.X
申请日:2022-10-19
Applicant: 核工业北京地质研究院
Inventor: 李子颖 , 聂江涛 , 郭建 , 刘军港 , 林锦荣 , 秦明宽 , 范洪海 , 蔡煜琦 , 唐湘生 , 张玉燕 , 刘文泉 , 朱鹏飞 , 黄宏业 , 孙晔 , 张杰林 , 田明明 , 黄志新 , 刘鑫杨 , 何升 , 张明林 , 庞雅庆 , 张运涛 , 赵宇霆 , 司志发 , 马永胜 , 修晓茜 , 曹珂 , 李鲲 , 庞文静
Abstract: 本申请涉及借助岩体的物理、化学性质来分析岩体的方法,具体涉及一种确定热液铀矿成矿机制的方法,包括:采集热液铀矿勘查区中的蚀变岩石样品、未蚀变岩石样品和与铀矿石共生的脉石矿物样品,脉石矿物样品至少包括石英、萤石和方解石;对蚀变岩石样品、未蚀变岩石样品和脉石矿物样品进行组分分析,以确定成矿流体的组分和氧化还原特征;基于成矿流体的组分和氧化还原特征确定热液铀矿勘查区中的热液铀矿成矿机制。
-
公开(公告)号:CN115078435A
公开(公告)日:2022-09-20
申请号:CN202210729154.9
申请日:2022-06-24
Applicant: 核工业北京地质研究院
IPC: G01N23/2251 , C12Q1/02
Abstract: 本发明属于砂岩型铀矿评价领域,具体公开了一种适用于判断微生物作用与铀成矿关系的方法,包括:确定研究区的含矿目的层;通过扫描电镜观察含黑色炭屑的砂岩样品,进行黄铁矿微生物生长特点分析;对含矿目的层中含脉状黄铁矿样品,进行微区原位硫同位素分析,判断黄铁矿细菌还原硫酸盐作用成因;对矿石样品中的铀矿物进行微区原位电子探针主量元素分析,判断铀矿物与微生物活动关系;对目的层各蚀变带的样品进行主量元素分析,判断各蚀变带与微生物活动关系;对含矿目的层中含脉状黄铁矿样品,进行电子探针元素分析,判断黄铁矿与生物成因的关系;判断微生物与砂岩型铀矿成矿作用关系。本发明能够快速、准确判断微生物作用与铀成矿关系。
-
公开(公告)号:CN114970770A
公开(公告)日:2022-08-30
申请号:CN202210861541.8
申请日:2022-07-22
Applicant: 核工业北京地质研究院
Inventor: 李子颖 , 刘武生 , 秦明宽 , 蔡煜琦 , 郭庆银 , 贺锋 , 钟军 , 李西得 , 孙晔 , 张云龙 , 李伟涛 , 王果 , 李盛富 , 蔡建芳 , 王贵 , 姜山 , 张杰林 , 何升 , 吴曲波 , 张字龙 , 刘持恒 , 邱林飞 , 刘祜 , 纪宏伟 , 郭强 , 朱鹏飞 , 刘鑫扬 , 张玉燕 , 黄志新 , 郭建 , 韩美芝 , 何中波 , 林锦荣 , 贾立城 , 王君贤 , 衣龙升 , 田明明 , 骆效能 , 彭波 , 修晓茜 , 郝瑞祥 , 王文全 , 余长发
Abstract: 本申请涉及借助地质体的物理、化学性质来分析地质体的方法,具体涉及一种渗出型砂岩铀矿识别方法,根据本申请实施例的渗出型砂岩铀矿识别方法能够系统地对渗出成矿作用形成的渗出型砂岩铀矿进行识别,从而指导沉积盆地的红杂色砂岩建造中的铀矿预测和找矿评价,避免错矿和漏矿,开辟新的找矿层位和空间,突破新的铀资源。
-
公开(公告)号:CN113514886B
公开(公告)日:2021-12-10
申请号:CN202110831473.6
申请日:2021-07-22
Applicant: 核工业北京地质研究院
Abstract: 本发明的实施例提供一种砂岩型铀矿成矿有利部位地质‑地震三维预测方法,包括:确定待勘测区域和所述待勘测区域中的目标层;在所述待勘测区域中设置地震测线,获取所述地震测线所在的剖面的地震数据;圈定所述剖面中的洼陷区域和目标区域;根据所述地震数据确定所述目标区域中地层的倾角,以及下伏于所述目标区域的地层的倾角,所述下伏于所述目标区域的地层在所述洼陷区域内;根据所述地震数据确定所述目标区域以及所述洼陷区域中的断裂分布;在所述目标区域中圈定铀矿成矿部位。根据本发明实施例的砂岩型铀矿成矿有利部位地质‑地震三维预测方法能够高效且较为准确地预测铀矿的分布区域。
-
公开(公告)号:CN109580498B
公开(公告)日:2021-10-19
申请号:CN201811581401.5
申请日:2018-12-24
Applicant: 核工业北京地质研究院
Abstract: 本发明属于铀矿成矿理论和找矿技术方法领域,具体涉及一种砂岩型铀矿含矿层间氧化带地质识别方法,包括如下步骤:步骤一、氧化带的识别;步骤二、初步判别氧化程度;进入第三步,继续识别;如果氧化程度较低则含矿性较低,识别终止;步骤三、采集样品;采集层间氧化带砂岩样品;步骤四、矿物学识别;将样品磨制成薄片,在光学显微镜下观察含铀矿物蚀变分解情况,如果含铀矿物均发生了蚀变分解,则层间氧化带含矿;步骤五、地球化学识别;测试样品中的微量元素组成,分析U、V、Mo、Re、Se等元素迁出情况,如果这些元素均有迁出现象,则层间氧化带含矿。
-
公开(公告)号:CN109540929B
公开(公告)日:2021-04-13
申请号:CN201811588751.4
申请日:2018-12-25
Applicant: 核工业北京地质研究院
IPC: G01N23/00
Abstract: 本发明属于盆地内砂岩型铀矿技术方法领域,具体公开一种测定盆地砂岩型铀矿成矿年龄的方法,该方法包括如下步骤:步骤(1)矿床及目的层选取,确定含矿建造的地层年龄t0;步骤(2)矿石样品采集;步骤(3)矿石样品光薄片磨片;步骤(4)对光薄片进行粒度统计;步骤(5)根据粒度级别划分结果对样品破碎、样品按颗粒级别划分;步骤(6)对分类好的不同颗粒度级别样品进行全岩U‑Pb同位素定年,并行等时线年龄计算;步骤(7)根据等时线年龄和地层年龄t0,确定铀矿成矿年龄。本发明的方法能够准确厘定盆地砂岩型铀矿的形成时代,最大程度的消除砂岩中含铀碎屑颗粒的影响,进而最大限度接近铀矿床的真实形成年龄。
-
公开(公告)号:CN112444890A
公开(公告)日:2021-03-05
申请号:CN202011230041.1
申请日:2020-11-06
Applicant: 核工业北京地质研究院
IPC: G01V9/00
Abstract: 本发明属于铀矿勘查地球物理技术领域,具体涉及一种深部铀矿二维氡气差量探测方法,该方法包括以下步骤:步骤(1)选区并定位测点;步骤(2)根据步骤(1)确定的定位测点,钻孔和埋置活性炭吸附器;步骤(3)测量步骤(2)中每个孔内活性炭吸附器的氡浓度;步骤(4)计算测线测点土壤氡气浓度差量;步骤(5)计算测线测点土壤氡浓度差量和;步骤(6)根据步骤(5)中测线测点土壤氡浓度差量和构建二维空间散点数据;步骤(7)预测深部铀矿的定位。本发明采用氡及其子体的纵向剖面二维测量方法将活性炭吸附装置埋置于浅层土壤中,探测纵向剖面不同深度层位中氡气浓度,计算获取纵向剖面二维氡差量,实现深部铀矿产资源靶区圈定。
-
-
-
-
-
-
-
-
-