-
公开(公告)号:CN111570529A
公开(公告)日:2020-08-25
申请号:CN202010441193.X
申请日:2020-05-22
Applicant: 东北大学
Abstract: 本发明提供了一种全连续热轧薄带线断带的紧急情况卷取机自动的控制方法,首先根据断带位置的不同,将断带类型分为三种情况:当第一块钢没有进入2#卷取机之前断带;带钢已经进入2#卷取机,断带后需要进入1#卷取机卷钢;带钢已经进入1#卷取机,断带后需要进入2#卷取机卷钢;断带后手动挽救需同时操作多个设备,很难保证成功干预,本方法通过安装的相关元器件,根据具体情况,采用具体的控制方法实现不同情况下的一键紧急处理方法,避免了断带而全线停机造成的不必要经济损失,也减少了因为断带而停车导致的处理废钢时间,同时规避了再启车组织生产的时间浪费,不但能提高生产线的生产效率,还能有效回避生产安全问题。
-
公开(公告)号:CN111462119A
公开(公告)日:2020-07-28
申请号:CN202010461045.4
申请日:2020-05-27
Applicant: 东北大学
IPC: G06T7/00 , G06T7/11 , G06T7/13 , G06T7/136 , G06T7/187 , G06T7/60 , G06T7/62 , G06T7/80 , G06T5/00 , G06T5/20 , G06T5/30
Abstract: 本发明提供一种基于机器视觉的宽厚板剪切排样方法。利用机器视觉技术得到宽厚板的精确轮廓数据,并利用该数据对成型后的宽厚板分类并进行剪切线的划分,特别在宽厚板发生短尺时,采用混合遗传排样方法,将短尺的订单和宽厚板数据加入待排样订单集中,并根据实际剪切情况建立排样模型,并将启发式的排样策略融入遗传算法中进行搜索,从而得到所建立排样模型的最优解;本发明可有效提高宽厚板剪切流程的成材率,降低宽厚板切损率,而且具有简单高效、计算速度快等优点。
-
公开(公告)号:CN110404977B
公开(公告)日:2020-07-28
申请号:CN201910680000.3
申请日:2019-07-26
Applicant: 东北大学
Abstract: 本发明提供一种板带轧制过程在线质量判定方法,涉及轧制自动控制技术领域。该方法从厚度测量仪表获得实测数据之后,通过计算采样点对应的采样长度,按照基准长度重新进行采样点划分,后进行轧件头部、本体、尾部各部分的厚度质量的标准差及合格率,并与目标合格率进行比较,得到合格品和不合格品的等级;进一步通过头尾切除、分切等方式给出轧件的后续处理建议。本发明能够充分对轧件厚度质量进行综合评判,解决了传统厚度判定方式存在的不足,为热轧产品厚度质量的在线判定提供了有效的手段。
-
公开(公告)号:CN109013717B
公开(公告)日:2019-10-25
申请号:CN201810951651.7
申请日:2018-08-21
Applicant: 东北大学
Abstract: 本发明提供一种热连轧中间坯心部温度计算方法,涉及轧钢自动控制技术领域。该方法根据粗轧区末轧制道次实际测量得到的轧制力速度、宽度和厚度计算得到轧件平均温度,通过空冷温降计算得到轧件在运输辊道上的温降损失,得到轧件的平均温度,再进一步结合轧件在中间辊道的任一位置的表面温度,即可以计算得到轧件的心部温度。本发明的方法安全可高,计算精度高,能够成功应用于热连轧机中间坯心部温度的计算过程,解决了实际过程中中间坯心部温度无法直接在线测量的问题,节约生产投资成本的同时,保证温度的计算精度,为成品厚度的在线精准控制提供了良好基础。
-
公开(公告)号:CN110180900A
公开(公告)日:2019-08-30
申请号:CN201910552424.1
申请日:2019-06-25
Applicant: 东北大学
IPC: B21B37/16
Abstract: 本发明提出一种厚规格窄带钢厚度控制方法,属于轧制自动控制技术领域,包括:采集PDI数据;计算轧件运行速度;计算轧件通过轧线特定位置的时间及对应的采样点数目;根据采样点数目确定轧件厚度的计算方式;计算轧件扭转造成的测量偏差;使用测量偏差补偿测厚仪的实测数据,得到补偿后的测厚仪的实测数据;使用补偿后的厚度测量值进行厚度控制,完成轧制过程。本发明在现有系统基础上,仅通过对数据分析和处理,即可以实现厚规格窄带钢的厚度测量,无须对现有控制系统进行修改,能够保证厚度的测量精度,安全可靠,为厚度自动控制系统的正常投用提供了良好的基础。
-
公开(公告)号:CN110116138A
公开(公告)日:2019-08-13
申请号:CN201910508641.0
申请日:2019-06-13
IPC: B21B38/00
Abstract: 本发明涉及一种轧制过程中热态钢板长度及侧弯测量方法,所述方法采用高速线阵相机,使用光栅信号触发拍摄钢板图像,应用图像处理算法进行边缘提取,通过对运动中的钢板的测量,依据边缘点、宽度中心线、带钢本体和扫描线扫描区域确定钢板长度及侧弯量的大小。本发明实现了对运动中轧制后热态钢板长度及侧弯量的在线测量,测量系统硬件配置简单,计算方法高效精确,可实时反应带钢的宽度信息,且避免的人工测量带来的误差;具有速度快,精度高的特点,能够快速准确的计算钢板长度及侧弯量。同时为钢板后续定尺提供了准确的数据,进而提高了钢板的产品质量,为后续剪切以及侧弯控制提供准确的数据。
-
公开(公告)号:CN106552831B
公开(公告)日:2019-07-12
申请号:CN201611064638.7
申请日:2016-11-28
Applicant: 东北大学
Abstract: 一种薄规格热轧带钢的制造方法,其特征在于一台单机单流的薄板坯连铸机直接与轧机相连,炼钢→连铸→摆式剪→推钢→除鳞→边部加热→粗轧机组→飞剪→无芯卷取→感应加热→除鳞→精轧机组→带钢冷却→剪切→卷取→卸卷→打捆→运卷→称重、标印→运输→存放。采用无头轧制工艺,或单坯轧制工艺。连铸机出口铸坯温度,较ESP生产线高出100~150℃,提高了连铸坯余热的利用率,降低了能耗;较ESP生产线,将摆式剪和推钢辊道迁移至粗轧机前,缩短粗轧后中间辊道的距离,减少中间坯温降,降低感应补热量,并可避免粗轧机轧辊产生热裂纹。粗轧机组入口配备除鳞装置,精轧机组采用在线热备技术和在线快速换辊技术,有效提高产品表面质量。
-
公开(公告)号:CN107977793A
公开(公告)日:2018-05-01
申请号:CN201711332201.1
申请日:2017-12-13
Applicant: 东北大学
Abstract: 本发明提供一种冷轧轧制升降速过程中加速度设定的优化方法,包括:轧前准备工作,保持稳定的轧制工艺;选取不同板带,在AGC厚度控制下板带出口厚度稳定后,在后续道次中升降速轧制板带,实时记录相关轧制数据进行轧制速度-加速度关系的测试;实时计算当前加速度设定系数,设定当前加速度,将加速度设定值发送至传动控制系统;若轧机出口测厚仪测得的板带厚度偏差超出预定的偏差范围,对加速度设定系数进行二次设定,否则按照当前加速度进行升降速操作。采用易于操作方式控制传动系统并记录实际输出速度、加速时间、厚度偏差数据,获得轧机速度-加速度设定系数曲线,通过调节加速度改变轧制节奏有效发挥工况剧烈变化情况下AGC厚控能力。
-
公开(公告)号:CN104942002B
公开(公告)日:2017-01-18
申请号:CN201510379698.7
申请日:2015-07-01
Applicant: 东北大学
IPC: B21B15/00
Abstract: 本发明提供一种热轧带钢中间坯切头控制方法,包括:获取热轧带钢中间坯运行速度和热轧带钢中间坯头部到飞剪剪切点的初始长度;飞剪控制系统确定当前所需飞剪加速时间、飞剪加速度和恒速运行时间;飞剪控制系统通过飞剪电机控制飞剪先以飞剪加速度持续运行所需飞剪加速时间,再匀速持续运行恒速运行时间,完成热轧带钢中间坯切头控制。本发明综合考虑剪切能量损失和超前率获得了飞剪剪切速度,通过对中间坯实时速度积分获得实时剪切距离和剪切剩余时间,根据飞剪转鼓剩余弧长和实际剪切速度得到飞剪实时加速度和加速时间。本发明在大多轧制现场环境下均能方便实现,根据实际速度实时调整飞剪加速度和加速时间后可以大幅度提高中间坯头部剪切精度。
-
公开(公告)号:CN104985007A
公开(公告)日:2015-10-21
申请号:CN201510444234.X
申请日:2015-07-24
Applicant: 东北大学
IPC: B21B38/02
Abstract: 本发明提供一种铜铝三明治轧制复合带头缺陷长度的预测方法,包括:获取铜铝三明治轧制复合带头缺陷长度预测模型的参数,并根据所述铜铝三明治轧制复合带头缺陷长度预测模型的参数,得到轧制复合初始带材的厚度、轧制复合初始带材的半厚度、初始上层带材的厚度、初始内层带材的半厚度和轧制复合最终带材的半厚度,根据轧制复合的出入口厚度,得到道次压下率,通过建立铜铝三明治轧制复合带头缺陷长度预测模型,将所述铜铝三明治轧制复合带头缺陷长度预测模型的参数带入所述铜铝三明治轧制复合带头缺陷长度预测模型,得到预测的带头缺陷长度,由此,能够对复合带头的缺陷长度进行预测,进而大幅度的提升产量和减少不必要的切损。
-
-
-
-
-
-
-
-
-