-
公开(公告)号:CN106202807B
公开(公告)日:2019-06-18
申请号:CN201610589156.7
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 判别航天器身部激波/前缘类激波干扰发生条件及类型的方法,属于航天器气动热环境分析领域。该方法根据激波关系式建立了身部激波/前缘类激波干扰发生条件与飞行状态和气动外形的定量关系,对身部激波/前缘类激波干扰发生条件作出快速判别并给出干扰作用位置;建立了身部激波/前缘类激波干扰类型判别特征参数与飞行状态和气动外形参数的关联关系,根据不同类型身部激波/前缘类激波干扰流动结构特征,对干扰类型作出快速判别,本发明方法可大大缩减身部激波/前缘类激波干扰发生条件及类型的判别周期,降低判别难度,提高设计效率。
-
公开(公告)号:CN107958102A
公开(公告)日:2018-04-24
申请号:CN201711086208.X
申请日:2017-11-07
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: G06F17/5009 , G06F17/5095 , G06F2217/80
Abstract: 本发明提供了一种用于高超声速气动热预测的偏差大气参数确定方法,属于高超声速飞行器气动热环境预示技术领域。该方法包括如下步骤:(1)、根据飞行弹道点的飞行高度H,由标准大气方程组,得出该弹道点对应的标准大气密度ρ;(2)、根据飞行弹道点的飞行高度H,由大气密度偏差Δρ与高度的关系,得出对应的大气密度偏差量Δρ,由标准大气密度ρ和大气密度偏差量Δρ,得出该飞行高度H对应的偏差大气密度ρ';(3)、根据偏差大气密度ρ',由标准大气方程组,反查出与偏差大气密度ρ'对应的偏差大气高度H';(4)、根据偏差大气高度H',由标准大气方程组,分别计算得到偏差大气压力P'和偏差大气温度T'。本发明相对其它方法来确定偏差大气参数,具有方便快速的特点。
-
公开(公告)号:CN106872195A
公开(公告)日:2017-06-20
申请号:CN201710010082.1
申请日:2017-01-06
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
CPC classification number: G01M99/002
Abstract: 本发明公开了一种高速飞行器气动热飞行试验数据的关联分析方法,包括:基于飞行器第一典型部位和第二典型部位之间热流的三维流线关系,对所述三维流线关系进行解析拟合,得到所述第一典型部位与第二典型部位之间热流的关联简式;根据所述关联简式,对不同典型部位的气动热数据进行关联分析。通过本发明提高了典型部位的气动热数据的利用效率,降低了测试成本,提高了测试效率。
-
公开(公告)号:CN106841288A
公开(公告)日:2017-06-13
申请号:CN201710178525.8
申请日:2017-03-23
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01N25/20
Abstract: 本发明公开了一种基于一次飞行多种热防护材料的综合分析方法,其特征在于,所述方法包括以下步骤:步骤一:在第一凹槽上安装超高温陶瓷材料、在第二凹槽上安装第一C/SiC材料,在第三凹槽上安装抗氧化碳/碳材料、在第四凹槽上安装第二C/SiC材料;步骤二:布置距离几何前缘线不同深度的三个温度传感器;步骤三:通过气动热数值计算得到热流变化,并与超高温陶瓷材料、抗氧化碳/碳材料、第一C/SiC和第二C/SiC材料几何前缘线处热流变化进行对比,获得超高温陶瓷材料、抗氧化碳/碳材料、第一C/SiC和第二C/SiC材料在临近空间高超声速条件下的催化特性。本发明根据获取的热响应数据辨识前缘区域热流并结合飞试材料微结构的变化,为翼前缘防热设计提供支撑。
-
公开(公告)号:CN206944325U
公开(公告)日:2018-01-30
申请号:CN201720683663.7
申请日:2017-06-13
Applicant: 北京中建建筑科学研究院有限公司 , 北京临近空间飞行器系统工程研究所 , 中国建筑一局(集团)有限公司 , 北京市建设工程质量第六检测所有限公司
IPC: F24D19/10
Abstract: 本实用新型提供一种供暖循环动力控制系统,包括:锅炉、斜三通、止回阀、渐扩管、循环水泵、阀门、除污器、水箱、热用户;其中所述锅炉通过斜三通和止回阀连接主管路,且循环水泵的出水口通过渐扩管连接斜三通的下倾斜管,且所述斜三通的横管两端接入主管路;循环水泵的入水口通过渐扩管接入主管路;且所述斜三通还通过除污器连接水箱和热用户。进一步的,斜三通的下倾斜管与横管的夹角为30°~60°;且所述渐扩管的扩张角为6°~12°;其中所述循环水泵的出水口和入水口都连接渐扩管口径小的一端。(ESM)同样的发明创造已同日申请发明专利
-
-
-
-