-
公开(公告)号:CN114623636B
公开(公告)日:2023-02-03
申请号:CN202210531787.9
申请日:2022-05-17
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
Abstract: 本发明属于高速风洞试验设备技术领域,公开了一种用于冷却水温度分类调节的循环水系统。该循环水系统包括水池、水泵、用水设备、冷却塔以及附属的管路、阀门,根据用水设备的冷却水温度将循环水系统的水路分为A、B、C三类水路;A类采用Ⅰ类水泵从水池抽取冷却水对用水设备1或者用水设备2冷却后,余水直接排入水池;B类水路采用Ⅱ类水泵从水池抽取冷却水对用水设备3、用水设备4或者用水设备5冷却后,余水经Ⅱ类冷却塔冷却后排入水池;C类水路采用Ⅱ类水泵从水池抽取冷却水对用水设备6冷却后,余水经Ⅰ类冷却塔冷却后排入水池。该循环水系统适用于多个用水设备同时运行且冷却需求不等的情况,具有经济价值和工业推广价值。
-
公开(公告)号:CN113884024B
公开(公告)日:2022-02-08
申请号:CN202111473001.4
申请日:2021-12-06
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
Abstract: 本发明公开了一种用于大型风洞收缩段的制作安装检测方法。该方法主要包括以下步骤:支撑筋板制作,支撑筋板固定在外壳体上,支撑筋板检测与修磨,内型面三维压制成型,内型面标记靶点和编号,内型面与支撑筋板临时固定,内型面表面精度检测,内型面修型或支撑筋板修磨,内型面与支撑筋板永久固定。该方法适用于钢结构风洞洞体建设项目及曲面精度要求较高的大型钢制结构件建设项目,能够实现大型钢结构风洞收缩段内型面制作、安装过程中三维曲面表面精度的快速检测,同时在后续设备运行过程中,也能方便、快捷实现的内型面表面精度的监测。
-
公开(公告)号:CN113884024A
公开(公告)日:2022-01-04
申请号:CN202111473001.4
申请日:2021-12-06
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
Abstract: 本发明公开了一种用于大型风洞收缩段的制作安装检测方法。该方法主要包括以下步骤:支撑筋板制作,支撑筋板固定在外壳体上,支撑筋板检测与修磨,内型面三维压制成型,内型面标记靶点和编号,内型面与支撑筋板临时固定,内型面表面精度检测,内型面修型或支撑筋板修磨,内型面与支撑筋板永久固定。该方法适用于钢结构风洞洞体建设项目及曲面精度要求较高的大型钢制结构件建设项目,能够实现大型钢结构风洞收缩段内型面制作、安装过程中三维曲面表面精度的快速检测,同时在后续设备运行过程中,也能方便、快捷实现的内型面表面精度的监测。
-
公开(公告)号:CN112483495A
公开(公告)日:2021-03-12
申请号:CN202011427148.5
申请日:2020-12-09
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
IPC: F15B11/22 , F15B13/06 , F15B13/02 , F15B13/044 , F15B21/041 , F15B21/02 , F15B19/00 , G01M9/04
Abstract: 本发明公开了一种基于同步马达的多缸同步开环控制系统及控制方法,包括:风洞侧壁板,风洞侧壁板同侧设置有两只油缸,且油缸的活塞杆与风洞侧壁板固定相接;液压同步马达,其通过管路分别与两只同侧设置的油缸相连;回油节流阀,其与油缸相连;电磁换向阀,其通过管路分别与液压同步马达、精密节流阀和回油节流阀相连;液压同步马达与油缸的无杆腔相连,回油节流阀与油缸的有杆腔相连。流量补偿旁路,其与液压同步马达为并联连接。本发明将液压同步马达接入风洞液压同步控制系统中,实现了风洞侧壁板同侧油缸的同步运动,通过合理组合配置旁路补偿元件,能够达到很高的同步精度,有效避免轨道等结构损伤加剧,具有较高的应用和推广价值。
-
公开(公告)号:CN106444792A
公开(公告)日:2017-02-22
申请号:CN201610827696.4
申请日:2016-09-18
Applicant: 中国空气动力研究与发展中心高速空气动力研究所 , 成都天麒科技有限公司
IPC: G05D1/04
CPC classification number: G05D1/042
Abstract: 本发明公开了一种基于红外线视觉识别的无人机降落定位系统与方法,所述的系统包括机载子系统和位于地面基站的红外发射点;所述的机载子系统包括红外成像模块、高度探测模块、水平偏移计算模块和飞行控制模块,红外成像模块和高度探测模块分别与水平偏移计算模块连接,水平偏移计算模块与飞行控制模块连接。本发明提供了一种基于红外线视觉识别的无人机降落定位系统与方法,根据红外发射点的成像数据和无人机距离地面的高度,计算出无人机与红外发射点的水平偏移,控制无人机在水平方向运动,纠正无人机与红外发射点的水平偏移后,实现无人机降落,无人机降落过程中定位准确,且成本低。
-
公开(公告)号:CN119147211A
公开(公告)日:2024-12-17
申请号:CN202411604147.1
申请日:2024-11-12
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
Abstract: 本发明公开了一种预估风洞模型支杆系统动稳定性及颤振边界的方法,属于风洞试验领域,包括:S1、以风洞模型为对象,建立考虑支杆的动力学模型;S2、基于S1得到的动力学模型以及设定的参数值,预估风洞模型支杆系统的颤振边界动压q;S3、将实际风洞试验过程中的运行动压q0与颤振边界动压q进行对比,以判断风洞模型支杆系统在整个试验过程中的动稳定性。本发明提出一种预估风洞模型支杆系统动稳定性及颤振边界的方法,能够降低常规测力风洞试验时突然因失速颤振导致振动发散的风险,防止因试验风险评估不充分而造成的重大经济损失,对常规测力风洞试验设计具有重要的工程应用价值。
-
公开(公告)号:CN118881980A
公开(公告)日:2024-11-01
申请号:CN202411365298.6
申请日:2024-09-29
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
Abstract: 本发明属于航空航天设备制造领域,公开了一种大型金属波纹管在线实时监测设备及泄漏判断方法。在线实时监测设备将压力传感器分布于金属波纹管内流道、金属波纹管外部及双层金属波纹管的夹层;温度传感器分布于金属波纹管内流道、金属波纹管的向阳面和背阴面;位移传感器分布于金属波纹管圆周四个象限、径向的水平面和垂直面上。泄漏判断方法将双层金属波纹管的层间压力抽至真空状态;设置层间压力与内流道压力差值ΔP1,层间压力与外部压力差值ΔP2;ΔP1发生突变,则内层金属波纹管出现泄漏;ΔP2发生突变,则外层金属波纹管出现泄漏。为大型金属波纹管的状态检查、安全报警、寿命预测提供了技术支撑,提高了安全性和可靠性。
-
公开(公告)号:CN118329364A
公开(公告)日:2024-07-12
申请号:CN202410749022.1
申请日:2024-06-12
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
IPC: G01M9/04
Abstract: 本发明属于风洞设备技术领域,具体涉及一种单驱动方式下丝杠可伸缩和旋转的风洞部段拉紧机构。风洞部段拉紧机构包括丝杠;还包括控制丝杠运动的传动机构和回转机构;丝杠位于导向筒的中心轴线上,回转机构安装在导向筒的上部,传动机构安装在导向筒的下部;导向筒和传动机构均固定在升降机主体上;传动机构驱动丝杠进行伸缩移动;丝杠进行伸缩移动时,回转机构控制丝杠在伸缩移动和旋转运动的两种运动模式中进行切换。风洞部段拉紧机构能够同时实现直线运动和旋转运动,安全可靠。
-
公开(公告)号:CN117949164B
公开(公告)日:2024-05-28
申请号:CN202410334706.5
申请日:2024-03-22
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
Abstract: 本发明属于高速风洞试验技术领域,公开了一种高速连续式风洞天平的时间相关数据修正方法。该时间相关数据修正方法包括:获取天平初读数;连续变马赫数M,获取各马赫数M下的0°迎角天平读数;进行吹风试验,获取各马赫数M对应各迎角阶梯的天平读数;获取天平末读数;计算各试验车次下的天平零点漂移修正量;确定天平零点漂移修正量;修正天平初读数。该时间相关数据修正方法,能够有效消除高速连续式风洞长时间运转带来的温度变化和时间变化所引起的天平零点漂移,压缩机一次启动可以连续吹风多条极曲线,极大地提高了试验效率,对于发挥高速连续式风洞优势,降低频繁关车重启对压缩机造成的影响,提高试验效率,具有良好的工程效果。
-
公开(公告)号:CN117949164A
公开(公告)日:2024-04-30
申请号:CN202410334706.5
申请日:2024-03-22
Applicant: 中国空气动力研究与发展中心高速空气动力研究所
Abstract: 本发明属于高速风洞试验技术领域,公开了一种高速连续式风洞天平的时间相关数据修正方法。该时间相关数据修正方法包括:获取天平初读数;连续变马赫数M,获取各马赫数M下的0°迎角天平读数;进行吹风试验,获取各马赫数M对应各迎角阶梯的天平读数;获取天平末读数;计算各试验车次下的天平零点漂移修正量;确定天平零点漂移修正量;修正天平初读数。该时间相关数据修正方法,能够有效消除高速连续式风洞长时间运转带来的温度变化和时间变化所引起的天平零点漂移,压缩机一次启动可以连续吹风多条极曲线,极大地提高了试验效率,对于发挥高速连续式风洞优势,降低频繁关车重启对压缩机造成的影响,提高试验效率,具有良好的工程效果。
-
-
-
-
-
-
-
-
-