-
公开(公告)号:CN111636022B
公开(公告)日:2021-12-03
申请号:CN202010423055.9
申请日:2020-05-19
Applicant: 有研工程技术研究院有限公司
Abstract: 本发明公开了属于固态储氢材料与技术领域的一种长寿命高容量钒基储氢合金及其氢化制粉方法。所述合金组成为VxTiyAlzM100‑x‑y‑z‑1~3at%Ce,其中x、y、z分别表示V、Ti、Al的原子数,x=70‑90,y=2‑10,z=1‑5;M为Fe、Cu、Zn、Mn和Cr中的一种或两种以上的组合,采用真空电弧翻身熔炼3‑5遍后在1000‑1200℃下热处理24h,随后快冷至室温。本发明的合金室温可逆储氢量可达2.30wt%以上,所述氢化制粉获得的合金颗粒大小均匀,避免了不均匀吸氢引起的鳞片状颗粒,可直接用于储氢合金床体制备,为燃料电池提供安全高效的固态氢源。
-
公开(公告)号:CN111636012B
公开(公告)日:2021-06-15
申请号:CN202010428266.1
申请日:2020-05-20
Applicant: 有研工程技术研究院有限公司
Abstract: 一种La‑Mg‑Ni系储氢材料及其制备方法,涉及一种固态储氢装置用La‑Mg‑Ni系储氢材料及其制备方法。其特征在于其储氢材料为通式为La1‑x‑yAxMgyNinBz合金,以(La,Mg)5Ni19相为主相,且包括(La,Mg)2Ni7、LaNi5相和(La,Mg)Ni3相中的一种或几种。制备过程采用金属单质或中间合金为原料,通过常规感应熔炼方法制备铸态合金,然后在惰性气氛中进行密封退火处理。本发明的储氢材料,具有由AB2型亚单元与AB5型亚单元层叠而成的超晶格结构。其中Mg高于常规电化学应用La‑Mg‑Ni系储氢材料的Mg含量,同时采用可提高材料平台压的稀土系元素替代La元素,两者结合显著提高La‑Mg‑Ni系储氢材料在常温下的平台压至一个大气压以上,满足了固态储氢装置的应用需求。
-
公开(公告)号:CN111647773A
公开(公告)日:2020-09-11
申请号:CN202010428268.0
申请日:2020-05-20
Applicant: 有研工程技术研究院有限公司
Abstract: 一种稀土储氢材料及其制备方法,涉及一种AB2型钇-镁-镍基稀土储氢材料。其特征在于其稀土储氢材料为组成通式为YaAbMgcNixBy的钇-镁-镍基储氢材料;该材料具有以AB2型(Y,A,Mg)(Ni,B)2相为主相,并同时含有A2B4型(Y,A)Mg(Ni,B)4相和AB3型(Y,A,Mg)(Ni,B)3相的混合相结构。其制备方法采用感应熔炼法,并将所得合金铸锭于真空或氩气气氛下进行退火处理。本发明的一种AB2型钇-镁-镍基稀土储氢材料,A侧通过Mg部分替代,可显著改善合金中AB2相的结构稳定性,减少合金氢致非晶化和氢致歧化。同时采用较大原子半径的Al、Mn等替代Ni元素,增大合金的晶胞体积,从而增加合金的储氢量,材料具有良好的可逆吸放氢特性,最大储氢量大于1.6wt.%。
-
公开(公告)号:CN111082037A
公开(公告)日:2020-04-28
申请号:CN201911408353.4
申请日:2019-12-31
Applicant: 有研工程技术研究院有限公司
Abstract: 本发明提供一种镍氢二次电池,其负极包含稀土储氢合金,所述储氢合金含有较高Y元素含量,并具有以Ce2Ni7相或Gd2Co7相为主相的晶体结构。碱性电解液以氢氧化钠作为电解液主体,浓度范围为6mol/L~8.5mol/L,可同时含有氢氧化钾、氢氧化锂中的一种或两种的混合物,且电解液中NaOH与KOH和/或LiOH的摩尔比大于1。该镍氢二次电池具有较高的放电容量和长的循环寿命。
-
公开(公告)号:CN108160989B
公开(公告)日:2019-12-13
申请号:CN201611120517.X
申请日:2016-12-07
Applicant: 有研工程技术研究院有限公司
Abstract: 本发明公开了一种抗毒化金属吸氢材料的制备方法。该方法为:对金属吸氢材料进行部分氢化后机械制粉成金属颗粒,采用化学镀的方法在金属颗粒表面依次包覆Pd膜和Cu膜形成Pd‑Cu复合膜,然后对包覆后的金属颗粒进行热处理,使Pd‑Cu复合膜合金化。通过该方法制备的抗毒化金属吸氢材料,在吸放氢过程中其表面的Pd‑Cu合金膜不易破裂脱落,保证了材料在含杂质气体的氢同位素气体中吸放氢性能的稳定性,即材料具有较高的循环使用寿命。
-
公开(公告)号:CN115044868B
公开(公告)日:2023-08-08
申请号:CN202210594764.2
申请日:2022-05-27
Applicant: 东北大学 , 有研工程技术研究院有限公司 , 有研(广东)新材料技术研究院 , 北京科技大学
IPC: C23C14/08 , C23C14/06 , C23C14/14 , C23C18/12 , C23C28/00 , C04B35/10 , C04B35/48 , C04B35/583 , C04B35/622
Abstract: 本发明涉及阻氢涂层领域,具体涉及一种氧化物陶瓷与二维材料复合阻氢涂层,包括从内到外依次包覆在基体上的锆与氧化钇稳定氧化锆共沉积层、氧化铝掺杂二维材料中间层、以及氧化铝陶瓷层。本发明公开的复合阻氢涂层最内层为金属单体与氧化陶瓷的共沉积层,与基体材料之间是以金属‑金属的方式进行结合的,热膨胀系数差异性小,可以有效改善结合强度,提高阻氢涂层的抗冷热冲击性能;将二维材料与氧化物陶瓷材料相结合,二维正六边形氧化石墨烯等二维材料的存在可以填补氧化物陶瓷材料生成过程中的缺陷,此外二维材料极强的阻挡性能可有效增强氧化物陶瓷涂层的氢渗透阻挡性能。
-
公开(公告)号:CN116242734A
公开(公告)日:2023-06-09
申请号:CN202211674826.7
申请日:2022-12-26
Applicant: 有研(广东)新材料技术研究院 , 有研工程技术研究院有限公司
Abstract: 本发明属于固态储氢罐测试装置技术领域,公开了一种金属氢化物储氢罐自动循环充放氢与充放氢性能测试系统,由自动循环充放氢装置、充放氢性能测试装置、控制与信息采集装置组成。该装置利用储氢合金的吸放氢平衡压随温度的上升/降低呈指数函数增大/减小的原理,由控制与信息采集装置对自动循环充放氢装置和充放氢性能测试装置控制,从而使自动循环充放氢装置对测试金属氢化物储氢罐进行快速加热/冷却来实现充放氢循环;充放氢性能测试装置对测试金属氢化物储氢罐的充放氢性能进行测试,相关数据由控制与信息采集装置记录。本发明提供的金属氢化物储氢罐自动循环充放氢与充放氢性能测试装置,具有结构简单、经济实用、易于实现、便于推广等优点。
-
公开(公告)号:CN115044875B
公开(公告)日:2023-06-06
申请号:CN202210594778.4
申请日:2022-05-27
Applicant: 东北大学 , 有研工程技术研究院有限公司 , 有研(广东)新材料技术研究院 , 北京科技大学
Abstract: 本发明公开了一种多层梯度复合阻氢涂层,包括至少3层包覆于基体上的不同的氧化物陶瓷层,所述基体与氧化物陶瓷层之间以及相邻的氧化物陶瓷层之间设置有不同的金属‑氧化物弥散层。本发明通过在层间引入金属‑氧化物弥散层作为层间过渡层,提高了涂层与基体、以及涂层与涂层之间的结合力,增强了涂层的高温稳定性,提高了涂层体系抗冷热冲击性能;复合涂层体系中弥散层的存在,使得层间结合方式转变为金属‑金属结合,且涂层在使用过程中即使顶层发生刮蹭而导致剥落,金属弥散层也会在高温下原位氧化生成相应氧化物层,用以弥补剥落的损害,具有一定的自修复性,有效延长涂层的氢渗透阻挡寿命。
-
公开(公告)号:CN116006896A
公开(公告)日:2023-04-25
申请号:CN202211550488.6
申请日:2022-12-05
Applicant: 有研工程技术研究院有限公司 , 有研(广东)新材料技术研究院
Abstract: 本发明公开了一种大型固态储氢装置,结构包括:水箱,多组交替间隔设置在水箱内的第一折流板、第二折流板;所述第一折流板为上部靠近一侧侧边的位置设有矩形流道口的立式板,所述第二折流板为上部靠近与第一折流板相反侧的侧边位置设有矩形流道口的立式板;相邻的第一折流板的上部与第二折流板的上部之间均通过第一立式阻水板连接。采用本发明循环热水的换热效率明显提高,大流量放氢过程中的压力和有效放氢量都有明显提高,这种设计可以大幅降低储氢装置的充放氢效率,进而满足提高储氢装置储氢规模和体积储氢密度的双向设计需求。
-
公开(公告)号:CN114709444A
公开(公告)日:2022-07-05
申请号:CN202210300660.6
申请日:2022-03-24
Applicant: 有研工程技术研究院有限公司
IPC: H01M8/04007 , H01M8/04082 , H01M8/04225 , H01M8/04302
Abstract: 本发明涉及氢燃料电池技术领域,提供一种基于快速自加热固态储氢装置的燃料电池系统及启动方法。该系统包括固态储氢装置、储气罐、燃料电池装置、换热水槽;固态储氢装置设置在换热水槽内,固态储氢装置包括外、内储氢罐,内储氢罐出口伸出外储氢罐后与储气罐连通,外、内储氢罐分别装填有低、高热焓储氢合金;外储氢罐、储气罐均与燃料电池连通;换热水槽与燃料电池通过冷、热水管路连通,热水管路设置循环水泵。本发明能够在启动初期快速自加热放氢,大大缩短启动初期固态储氢装置达到正常供氢所需的时间,使得燃料电池系统迅速稳定启动,且自加热启动功能能迅速恢复,大幅缩小储气罐及储氢装置体积,提高燃料电池系统运行的安全性与灵活性。
-
-
-
-
-
-
-
-
-