-
公开(公告)号:CN117828193A
公开(公告)日:2024-04-05
申请号:CN202410238782.6
申请日:2024-03-04
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/9535 , G06N3/098 , G06N3/0442
Abstract: 本发明属于计算机兴趣点推荐领域,提供了一种基于多兴趣半联合学习兴趣推荐方法、系统、设备及介质,包括获取用户行为数据进行预处理;基于预处理后的用户行为数据,利用预先训练好的多兴趣模型的半联合学习框架进行兴趣推荐;本发明能够有效识别多粒度的用户兴趣并感知时钟影响的连续依赖性,以不同粒度的兴趣组合来指导用户行为建模,并具体化时间点以学习连续的兴趣依赖关系;通过单模型预训练和多模型半联合训练,结合所有粒度的兴趣,为用户推荐其在未来指定的N个时间窗口内感兴趣的POI。
-
-
公开(公告)号:CN116866084A
公开(公告)日:2023-10-10
申请号:CN202311098883.X
申请日:2023-08-30
Applicant: 国网山东省电力公司信息通信公司 , 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明提出了基于强化学习的入侵响应决策方法及系统,涉及电力控制技术领域,获取电力控制系统的网络配置及设备的资产信息和安全信息,构建攻击图和贝叶斯攻击图;入侵发生时,基于构建的攻击图,利用深度强化学习算法,从动态策略集中选择最优的防护策略进行动态响应;入侵发生后,基于构建的贝叶斯攻击图,利用Q‑Learning粒子群优化算法,从静态策略集中选择最优的防护策略进行静态响应;本发明在攻击发生时采用深度强化学习DDQN算法进行策略选择,解决了强化学习DQN算法的高估问题,提高了决策质量;在攻击发生后采用Q‑Learning优化粒子群算法的参数进行策略选择,避免了局部最优解。
-
公开(公告)号:CN116361801B
公开(公告)日:2023-09-01
申请号:CN202310636026.4
申请日:2023-06-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F9/54 , G06N3/0464 , G06N3/08
Abstract: 本发明属于网络安全领域,提供了一种基于应用程序接口语义信息的恶意软件检测方法及系统,包括获取软件API调用序列并进行预处理;基于预处理后的API调用序列将每个API进行向量化表示,得到API调用序列特征向量;基于预处理后的API调用序列中的API调用名称将每个API进行向量化表示,得到API调用名称特征向量;根据API调用序列特征向量和API调用名称特征向量,利用预先训练好的恶意软件检测模型进行软件检测,得到检测结果。本发明通过词嵌入模型获得API调用序列的矢量表示,并描述API名称的语义结构信息和统计信息,解决了现有技术只分析单一特征或者对单一特征分析不充分导致信息丢失从而影响准确率的问题。
-
公开(公告)号:CN116340944B
公开(公告)日:2023-08-18
申请号:CN202310608993.X
申请日:2023-05-29
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56
Abstract: 本发明属于恶意代码分类技术领域,提出了一种基于RGB图像和轻量化模型的恶意代码分类方法及系统,包括:反编译原始恶意代码文件生成asm文件和bytes文件;提取asm文件中的操作码序列和bytes文件中的字节序列,将基于操作码序列生成的灰度图和马尔可夫图像以及基于字节序列生成的马尔可夫图像进行融合,得到融合后的RGB图像;将其输入至训练后的轻量化模型中进行分类。本发明分别提取操作码序列和字节序列,获得基于操作码频率的灰度图、基于操作码序列的马尔科夫图像、基于字节序列的马尔可夫图像;将操作码序列可视化为马尔可夫图像,最大限度地保证了提取特征的完整性,提高了模型的泛化能力。
-
公开(公告)号:CN116361801A
公开(公告)日:2023-06-30
申请号:CN202310636026.4
申请日:2023-06-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F9/54 , G06N3/0464 , G06N3/08
Abstract: 本发明属于网络安全领域,提供了一种基于应用程序接口语义信息的恶意软件检测方法及系统,包括获取软件API调用序列并进行预处理;基于预处理后的API调用序列将每个API进行向量化表示,得到API调用序列特征向量;基于预处理后的API调用序列中的API调用名称将每个API进行向量化表示,得到API调用名称特征向量;根据API调用序列特征向量和API调用名称特征向量,利用预先训练好的恶意软件检测模型进行软件检测,得到检测结果。本发明通过词嵌入模型获得API调用序列的矢量表示,并描述API名称的语义结构信息和统计信息,解决了现有技术只分析单一特征或者对单一特征分析不充分导致信息丢失从而影响准确率的问题。
-
公开(公告)号:CN116032775A
公开(公告)日:2023-04-28
申请号:CN202310025793.1
申请日:2023-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 哈尔滨工业大学(威海)
IPC: H04L41/14 , G06N20/10 , G06N3/08 , G06N3/0455 , G06N3/0442 , H04L41/142
Abstract: 本发明涉及一种面向概念漂移的工业控制网络异常检测方法,该方法以实时多维数据流作为目标数据。该方法在初始数据流上训练教师模型和单类支持向量机模型;对于每批次数据流,都基于教师模型训练一个新的学生模型;利用学生模型对当前批次数据流进行异常检测,并利用单类支持向量机模型清洗正常数据中的异常值以获得更新模型所需要的训练数据;利用旧的学生模型获得当前批次数据流和前一批次数据流的异常分数集,然后根据Hoeffding不等式计算模型的可靠性,从而计算模型的参数系数,利用参数系数更新模型以适应概念漂移。本发明可以有效解决异常检测模型在概念发生漂移时的效率衰减问题。
-
公开(公告)号:CN114926680A
公开(公告)日:2022-08-19
申请号:CN202210524306.1
申请日:2022-05-13
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于AlexNet网络模型的恶意软件分类方法及系统,包括:数据预处理:以二进制方式读取恶意软件;求取转移概率矩阵;标准化处理转移概率矩阵;在转移概率矩阵上应用色图,将恶意软件二进制文件可视化为恶意软件彩色图像,使用改进的CLAHE算法对恶意软件彩色图像进行增强处理。训练恶意软件分类模型即AlexNet网络模型;将待检测的恶意软件通过数据预处理后输入训练好的恶意软件分类模型得到恶意软件分类结果;本发明模型泛化能力强,同时避免信息的冗余或丢失问题,在增强图像的对比度同时能够抑制噪声,有效的提高分类的准确率;网络层数和模型参数减少,训练过程中消耗的时间和空间要少很多,分类速度明显提升。
-
公开(公告)号:CN112835337B
公开(公告)日:2021-08-24
申请号:CN202110004321.9
申请日:2021-01-04
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G05B19/418
Abstract: 本公开提供了一种工控安全靶场平台及方法,工控安全靶场平台模拟构建了一个城市水务数据采集与监视控制系统,由目标生产环境层、现场控制层以及监视控制层组成,包括快速输配水仿真模块、模拟PLC模块、模拟MTU模块、模拟HMI模块以及连接各模块的工业以太网通信网络;通过将实时的输配水仿真系统引入到工控安全仿真实验领域,增加了工控安全靶场的目标场景,解决了搭建实物、半实物城市水务工控安全仿真实验场景时费用高、耗时长、扩展难等问题;通过在目标生产环境仿真过程中引入预执行的仿真处理方法,解决了原仿真需要顺序执行因而仿真速度慢、效率低的问题。
-
公开(公告)号:CN112597495A
公开(公告)日:2021-04-02
申请号:CN202011532274.7
申请日:2020-12-22
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种恶意代码检测方法、系统、设备及存储介质。该方法包括;(1)训练阶段:利用已知软件样本训练多模态深度神经网络模型;(2)检测阶段:利用训练阶段训练好的多模态深度神经网络模型对未知软件样本进行检测。本发明可以将任意不同大小的软件样本转换为相同大小的灰度图像,便于应用于卷积神经网络;本发明同时使用了API函数调用序列、指令序列、字节流三个典型特征,克服了单一特征检测的局限,本发明多模态深度学习将静态特征与动态特征进行融合决策,能获得更全面且准确的恶意代码检测结果。
-
-
-
-
-
-
-
-
-