-
公开(公告)号:CN117034273A
公开(公告)日:2023-11-10
申请号:CN202311090888.8
申请日:2023-08-28
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了基于图卷积网络的安卓恶意软件检测方法及系统,从Classes.dex文件中提取API调用图、操作码和敏感权限,基于API调用图与敏感权限特征的映射关系,得到敏感权限API,以所述敏感权限API作为所述API调用图的中心节点,生成简化后的API调用图;将简化后的API调用图基于节点的调用关系,生成邻接矩阵;将简化后的API调用图与操作码、第三方库的API、敏感权限相结合,得到行为特征矩阵;将邻接矩阵与行为特征矩阵输入到基于GCN改进的检测模型中,得到检测结果。充分利用了API的语义信息,在减少了复杂度的同时提高了检测精度。
-
公开(公告)号:CN116361801B
公开(公告)日:2023-09-01
申请号:CN202310636026.4
申请日:2023-06-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F9/54 , G06N3/0464 , G06N3/08
Abstract: 本发明属于网络安全领域,提供了一种基于应用程序接口语义信息的恶意软件检测方法及系统,包括获取软件API调用序列并进行预处理;基于预处理后的API调用序列将每个API进行向量化表示,得到API调用序列特征向量;基于预处理后的API调用序列中的API调用名称将每个API进行向量化表示,得到API调用名称特征向量;根据API调用序列特征向量和API调用名称特征向量,利用预先训练好的恶意软件检测模型进行软件检测,得到检测结果。本发明通过词嵌入模型获得API调用序列的矢量表示,并描述API名称的语义结构信息和统计信息,解决了现有技术只分析单一特征或者对单一特征分析不充分导致信息丢失从而影响准确率的问题。
-
公开(公告)号:CN116340944B
公开(公告)日:2023-08-18
申请号:CN202310608993.X
申请日:2023-05-29
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56
Abstract: 本发明属于恶意代码分类技术领域,提出了一种基于RGB图像和轻量化模型的恶意代码分类方法及系统,包括:反编译原始恶意代码文件生成asm文件和bytes文件;提取asm文件中的操作码序列和bytes文件中的字节序列,将基于操作码序列生成的灰度图和马尔可夫图像以及基于字节序列生成的马尔可夫图像进行融合,得到融合后的RGB图像;将其输入至训练后的轻量化模型中进行分类。本发明分别提取操作码序列和字节序列,获得基于操作码频率的灰度图、基于操作码序列的马尔科夫图像、基于字节序列的马尔可夫图像;将操作码序列可视化为马尔可夫图像,最大限度地保证了提取特征的完整性,提高了模型的泛化能力。
-
公开(公告)号:CN116361801A
公开(公告)日:2023-06-30
申请号:CN202310636026.4
申请日:2023-06-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F9/54 , G06N3/0464 , G06N3/08
Abstract: 本发明属于网络安全领域,提供了一种基于应用程序接口语义信息的恶意软件检测方法及系统,包括获取软件API调用序列并进行预处理;基于预处理后的API调用序列将每个API进行向量化表示,得到API调用序列特征向量;基于预处理后的API调用序列中的API调用名称将每个API进行向量化表示,得到API调用名称特征向量;根据API调用序列特征向量和API调用名称特征向量,利用预先训练好的恶意软件检测模型进行软件检测,得到检测结果。本发明通过词嵌入模型获得API调用序列的矢量表示,并描述API名称的语义结构信息和统计信息,解决了现有技术只分析单一特征或者对单一特征分析不充分导致信息丢失从而影响准确率的问题。
-
公开(公告)号:CN114926680A
公开(公告)日:2022-08-19
申请号:CN202210524306.1
申请日:2022-05-13
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于AlexNet网络模型的恶意软件分类方法及系统,包括:数据预处理:以二进制方式读取恶意软件;求取转移概率矩阵;标准化处理转移概率矩阵;在转移概率矩阵上应用色图,将恶意软件二进制文件可视化为恶意软件彩色图像,使用改进的CLAHE算法对恶意软件彩色图像进行增强处理。训练恶意软件分类模型即AlexNet网络模型;将待检测的恶意软件通过数据预处理后输入训练好的恶意软件分类模型得到恶意软件分类结果;本发明模型泛化能力强,同时避免信息的冗余或丢失问题,在增强图像的对比度同时能够抑制噪声,有效的提高分类的准确率;网络层数和模型参数减少,训练过程中消耗的时间和空间要少很多,分类速度明显提升。
-
公开(公告)号:CN116340944A
公开(公告)日:2023-06-27
申请号:CN202310608993.X
申请日:2023-05-29
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56
Abstract: 本发明属于恶意代码分类技术领域,提出了一种基于RGB图像和轻量化模型的恶意代码分类方法及系统,包括:反编译原始恶意代码文件生成asm文件和bytes文件;提取asm文件中的操作码序列和bytes文件中的字节序列,将基于操作码序列生成的灰度图和马尔可夫图像以及基于字节序列生成的马尔可夫图像进行融合,得到融合后的RGB图像;将其输入至训练后的轻量化模型中进行分类。本发明分别提取操作码序列和字节序列,获得基于操作码频率的灰度图、基于操作码序列的马尔科夫图像、基于字节序列的马尔可夫图像;将操作码序列可视化为马尔可夫图像,最大限度地保证了提取特征的完整性,提高了模型的泛化能力。
-
公开(公告)号:CN117972701B
公开(公告)日:2024-06-07
申请号:CN202410381116.8
申请日:2024-04-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/25 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/082
Abstract: 本公开提供了基于多特征融合的抗混淆恶意代码分类方法及系统,涉及网络安全技术领域,根据恶意代码的.asm文件和.bytes文件;分别利用.asm文件和.bytes文件获取加权平均值和灰度图像;将所述加权平均值和灰度图像分别输入至改进的CNN模型中进行特征提取,并将提取出的特征进行融合,生成多特征融合特征表示,将所述多特征融合特征表示输入至引入双向注意力机制的Bi‑LSTM模型中,在前向和后向方向上分别计算注意力权重,并将两个方向的上下文信息进行整合,输出恶意代码分类结果。
-
公开(公告)号:CN117972701A
公开(公告)日:2024-05-03
申请号:CN202410381116.8
申请日:2024-04-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/25 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/082
Abstract: 本公开提供了基于多特征融合的抗混淆恶意代码分类方法及系统,涉及网络安全技术领域,根据恶意代码的.asm文件和.bytes文件;分别利用.asm文件和.bytes文件获取加权平均值和灰度图像;将所述加权平均值和灰度图像分别输入至改进的CNN模型中进行特征提取,并将提取出的特征进行融合,生成多特征融合特征表示,将所述多特征融合特征表示输入至引入双向注意力机制的Bi‑LSTM模型中,在前向和后向方向上分别计算注意力权重,并将两个方向的上下文信息进行整合,输出恶意代码分类结果。
-
公开(公告)号:CN114926680B
公开(公告)日:2022-11-11
申请号:CN202210524306.1
申请日:2022-05-13
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于AlexNet网络模型的恶意软件分类方法及系统,包括:数据预处理:以二进制方式读取恶意软件;求取转移概率矩阵;标准化处理转移概率矩阵;在转移概率矩阵上应用色图,将恶意软件二进制文件可视化为恶意软件彩色图像,使用改进的CLAHE算法对恶意软件彩色图像进行增强处理。训练恶意软件分类模型即AlexNet网络模型;将待检测的恶意软件通过数据预处理后输入训练好的恶意软件分类模型得到恶意软件分类结果;本发明模型泛化能力强,同时避免信息的冗余或丢失问题,在增强图像的对比度同时能够抑制噪声,有效的提高分类的准确率;网络层数和模型参数减少,训练过程中消耗的时间和空间要少很多,分类速度明显提升。
-
-
-
-
-
-
-
-