-
公开(公告)号:CN114926680B
公开(公告)日:2022-11-11
申请号:CN202210524306.1
申请日:2022-05-13
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于AlexNet网络模型的恶意软件分类方法及系统,包括:数据预处理:以二进制方式读取恶意软件;求取转移概率矩阵;标准化处理转移概率矩阵;在转移概率矩阵上应用色图,将恶意软件二进制文件可视化为恶意软件彩色图像,使用改进的CLAHE算法对恶意软件彩色图像进行增强处理。训练恶意软件分类模型即AlexNet网络模型;将待检测的恶意软件通过数据预处理后输入训练好的恶意软件分类模型得到恶意软件分类结果;本发明模型泛化能力强,同时避免信息的冗余或丢失问题,在增强图像的对比度同时能够抑制噪声,有效的提高分类的准确率;网络层数和模型参数减少,训练过程中消耗的时间和空间要少很多,分类速度明显提升。
-
公开(公告)号:CN117034273A
公开(公告)日:2023-11-10
申请号:CN202311090888.8
申请日:2023-08-28
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/0464 , G06N3/08
Abstract: 本发明提出了基于图卷积网络的安卓恶意软件检测方法及系统,从Classes.dex文件中提取API调用图、操作码和敏感权限,基于API调用图与敏感权限特征的映射关系,得到敏感权限API,以所述敏感权限API作为所述API调用图的中心节点,生成简化后的API调用图;将简化后的API调用图基于节点的调用关系,生成邻接矩阵;将简化后的API调用图与操作码、第三方库的API、敏感权限相结合,得到行为特征矩阵;将邻接矩阵与行为特征矩阵输入到基于GCN改进的检测模型中,得到检测结果。充分利用了API的语义信息,在减少了复杂度的同时提高了检测精度。
-
公开(公告)号:CN118036006B
公开(公告)日:2024-07-05
申请号:CN202410436840.6
申请日:2024-04-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/213 , G06F18/241 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种基于敏感API的恶意软件检测方法、系统、设备及介质,其属于软件检测技术领域,包括:对待检测的APK文件进行反编译,并从中提取API调用图、操作码以及包名;对API调用图中的每个节点进行分类,获得内部调用节点和外部调用节点;其中,对于内部调用节点采用操作码进行特征表示,外部调用节点采用API所在的包名进行特征表示;基于预设敏感API数据集,获取满足预设要求的若干敏感API,并基于所述若干敏感API对分类后的API调用图中的节点进行重要性标记,获得增强后的API调用图;将所述增强后的API调用图输入预先训练的基于深度学习的安卓恶意软件检测模型中,获得检测结果。
-
公开(公告)号:CN118036005B
公开(公告)日:2024-07-02
申请号:CN202410431681.0
申请日:2024-04-11
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F16/35 , G06F40/216 , G06N3/042
Abstract: 本发明提供了基于精简调用图的恶意应用检测方法、系统、设备及介质,其属于软件检测技术领域,包括:基于待检测应用程序的行为特征数据,进行函数调用图构建;基于预先构建的敏感API列表,从函数调用图中筛选出存在于敏感API列表中的外部调用函数节点和与所述外部调用函数节点直接或间接连接的节点,作为第一集合,以及与存在于第一集合中的节点直接或间接连接的内部自定义函数节点,作为第二集合;计算函数调用图中各节点的节点中心性,并以节点中心性大于预设阈值的节点,构建第三集合;基于获得的第一集合、第二集合及第三集合,构建精简调用图;基于精简调用图结合预先训练的基于深度学习的恶意软件检测模型,获得恶意软件检测结果。
-
公开(公告)号:CN116361801B
公开(公告)日:2023-09-01
申请号:CN202310636026.4
申请日:2023-06-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F9/54 , G06N3/0464 , G06N3/08
Abstract: 本发明属于网络安全领域,提供了一种基于应用程序接口语义信息的恶意软件检测方法及系统,包括获取软件API调用序列并进行预处理;基于预处理后的API调用序列将每个API进行向量化表示,得到API调用序列特征向量;基于预处理后的API调用序列中的API调用名称将每个API进行向量化表示,得到API调用名称特征向量;根据API调用序列特征向量和API调用名称特征向量,利用预先训练好的恶意软件检测模型进行软件检测,得到检测结果。本发明通过词嵌入模型获得API调用序列的矢量表示,并描述API名称的语义结构信息和统计信息,解决了现有技术只分析单一特征或者对单一特征分析不充分导致信息丢失从而影响准确率的问题。
-
公开(公告)号:CN116361801A
公开(公告)日:2023-06-30
申请号:CN202310636026.4
申请日:2023-06-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F9/54 , G06N3/0464 , G06N3/08
Abstract: 本发明属于网络安全领域,提供了一种基于应用程序接口语义信息的恶意软件检测方法及系统,包括获取软件API调用序列并进行预处理;基于预处理后的API调用序列将每个API进行向量化表示,得到API调用序列特征向量;基于预处理后的API调用序列中的API调用名称将每个API进行向量化表示,得到API调用名称特征向量;根据API调用序列特征向量和API调用名称特征向量,利用预先训练好的恶意软件检测模型进行软件检测,得到检测结果。本发明通过词嵌入模型获得API调用序列的矢量表示,并描述API名称的语义结构信息和统计信息,解决了现有技术只分析单一特征或者对单一特征分析不充分导致信息丢失从而影响准确率的问题。
-
公开(公告)号:CN114926680A
公开(公告)日:2022-08-19
申请号:CN202210524306.1
申请日:2022-05-13
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于AlexNet网络模型的恶意软件分类方法及系统,包括:数据预处理:以二进制方式读取恶意软件;求取转移概率矩阵;标准化处理转移概率矩阵;在转移概率矩阵上应用色图,将恶意软件二进制文件可视化为恶意软件彩色图像,使用改进的CLAHE算法对恶意软件彩色图像进行增强处理。训练恶意软件分类模型即AlexNet网络模型;将待检测的恶意软件通过数据预处理后输入训练好的恶意软件分类模型得到恶意软件分类结果;本发明模型泛化能力强,同时避免信息的冗余或丢失问题,在增强图像的对比度同时能够抑制噪声,有效的提高分类的准确率;网络层数和模型参数减少,训练过程中消耗的时间和空间要少很多,分类速度明显提升。
-
公开(公告)号:CN118036006A
公开(公告)日:2024-05-14
申请号:CN202410436840.6
申请日:2024-04-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F18/213 , G06F18/241 , G06N3/0442 , G06N3/08
Abstract: 本发明提供了一种基于敏感API的恶意软件检测方法、系统、设备及介质,其属于软件检测技术领域,包括:对待检测的APK文件进行反编译,并从中提取API调用图、操作码以及包名;对API调用图中的每个节点进行分类,获得内部调用节点和外部调用节点;其中,对于内部调用节点采用操作码进行特征表示,外部调用节点采用API所在的包名进行特征表示;基于预设敏感API数据集,获取满足预设要求的若干敏感API,并基于所述若干敏感API对分类后的API调用图中的节点进行重要性标记,获得增强后的API调用图;将所述增强后的API调用图输入预先训练的基于深度学习的安卓恶意软件检测模型中,获得检测结果。
-
公开(公告)号:CN118036005A
公开(公告)日:2024-05-14
申请号:CN202410431681.0
申请日:2024-04-11
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06F16/35 , G06F40/216 , G06N3/042
Abstract: 本发明提供了基于精简调用图的恶意应用检测方法、系统、设备及介质,其属于软件检测技术领域,包括:基于待检测应用程序的行为特征数据,进行函数调用图构建;基于预先构建的敏感API列表,从函数调用图中筛选出存在于敏感API列表中的外部调用函数节点和与所述外部调用函数节点直接或间接连接的节点,作为第一集合,以及与存在于第一集合中的节点直接或间接连接的内部自定义函数节点,作为第二集合;计算函数调用图中各节点的节点中心性,并以节点中心性大于预设阈值的节点,构建第三集合;基于获得的第一集合、第二集合及第三集合,构建精简调用图;基于精简调用图结合预先训练的基于深度学习的恶意软件检测模型,获得恶意软件检测结果。
-
-
-
-
-
-
-
-