-
公开(公告)号:CN111386029B
公开(公告)日:2020-12-15
申请号:CN202010105956.3
申请日:2020-02-20
Applicant: 哈尔滨工业大学
IPC: H02P21/14
Abstract: 本发明涉及一种双驱运动平台高精度同步控制方法及系统。该方法包括:根据双驱直线电机系统和牛顿第二定律,确定双驱直线电机模型;根据所述双驱直线电机模型,得到双驱直线电机状态方程;根据所述双驱直线电机模型和所述双驱直线电机状态方程,采用交叉耦合控制思想,设计双驱直线电机系统的低复杂度交叉耦合同步控制器;获取预设性能要求;根据所述预设性能要求,调整所述低复杂度交叉耦合同步控制器的参数。本发明不仅能够实现目前高速高精度贴片机领域的双驱直线电机同步控制,还能够解决由于系统模型复杂、参数变化和外部扰动等不确定性带来的控制难度大、精度低等问题。
-
公开(公告)号:CN108099535B
公开(公告)日:2019-08-23
申请号:CN201810068105.9
申请日:2018-01-24
Applicant: 哈尔滨工业大学
IPC: B60G17/016 , G06F17/50
Abstract: 一种车辆制动点头抑制方法,属于车辆非线性控制领域,解决了现有的车辆平顺性控制方法无法抑制车辆制动点头的问题。所述车辆制动点头抑制方法包括在车辆制动的过程中,根据车身俯仰物理模型建立车身俯仰动力学模型的步骤、根据车身俯仰动力学模型设计车辆制动点头抑制器的步骤以及通过车辆制动点头抑制器来同时调整车辆的前主动悬架控制输入力和后主动悬架控制输入力,进而抑制车辆的制动点头的步骤。通过本发明所述车辆制动点头抑制方法设计的车辆制动点头抑制器能够对车辆制动过程中的车身俯仰角进行控制,进而实现对车辆制动点头的抑制。本发明所述的车辆制动点头抑制方法适用于车辆的制动点头。
-
公开(公告)号:CN108437980A
公开(公告)日:2018-08-24
申请号:CN201810184772.3
申请日:2018-03-06
Applicant: 哈尔滨工业大学
IPC: B60W30/045
CPC classification number: B60W30/045 , B60W2050/0031
Abstract: 一种基于饱和自适应的车辆横摆稳定控制方法,属于车辆稳定控制领域,解决了现有车辆横摆稳定控制方法因未考虑车辆横摆稳定执行器的饱和问题而导致自身控制效果不理想的问题。本发明所述的基于饱和自适应的车辆横摆稳定控制方法包括建立车辆转弯时的二自由度车辆横摆动力学模型的步骤、根据二自由度车辆横摆动力学模型设计基于饱和自适应的车辆横摆稳定控制器的步骤以及通过基于饱和自适应的车辆横摆稳定控制器来调节车辆的直接横摆力矩,使车辆横摆角速度跟踪其参考稳态值的步骤。本发明所述的基于饱和自适应的车辆横摆稳定控制方法特别适用于对车辆进行横摆稳定控制。
-
公开(公告)号:CN108099535A
公开(公告)日:2018-06-01
申请号:CN201810068105.9
申请日:2018-01-24
Applicant: 哈尔滨工业大学
IPC: B60G17/016 , G06F17/50
Abstract: 一种车辆制动点头抑制方法,属于车辆非线性控制领域,解决了现有的车辆平顺性控制方法无法抑制车辆制动点头的问题。所述车辆制动点头抑制方法包括在车辆制动的过程中,根据车身俯仰物理模型建立车身俯仰动力学模型的步骤、根据车身俯仰动力学模型设计车辆制动点头抑制器的步骤以及通过车辆制动点头抑制器来同时调整车辆的前主动悬架控制输入力和后主动悬架控制输入力,进而抑制车辆的制动点头的步骤。通过本发明所述车辆制动点头抑制方法设计的车辆制动点头抑制器能够对车辆制动过程中的车身俯仰角进行控制,进而实现对车辆制动点头的抑制。本发明所述的车辆制动点头抑制方法适用于车辆的制动点头。
-
公开(公告)号:CN105291747B
公开(公告)日:2017-11-03
申请号:CN201510505243.5
申请日:2015-08-17
Applicant: 哈尔滨工业大学
IPC: B60G17/018
Abstract: 一种具有死区执行器的主动汽车悬架控制方法,本发明涉及主动汽车悬架控制方法。本发明是要解决现有技术在路面不平的路况下,无法达到保持舒适性的要求以及没有考虑在控制器的设计过程之中,导致系统的实际性能有所降低的问题,而提出的一种具有死区执行器的主动汽车悬架控制方法。该方法是通过步骤一、建立主动悬架系统中执行器死区的数学模型;步骤二、建立具有死区特性执行器的1/4的汽车主动悬架模型;步骤三、利用死区特性执行器的1/4的汽车主动悬架模型设计死区补偿控制器;步骤四、采用Lyapunov函数对1/4汽车悬架系统中引入死区补偿控制器后的闭环系统进行验证等步骤实现的。本发明应用于主动汽车悬架控制领域。
-
公开(公告)号:CN103522863B
公开(公告)日:2016-07-06
申请号:CN201310533413.1
申请日:2013-11-01
Applicant: 哈尔滨工业大学
IPC: B60G17/015
Abstract: 一种汽车主动悬架系统的执行器输入饱和控制方法,本发明涉及一种执行器输入饱和控制方法。本发明是要解决设计模型较为简单;无法满足汽车悬架系统的执行器饱和控制;无法应对不确定性参数的影响而提出了一种汽车主动悬架系统的执行器输入饱和控制方法。该方法是通过步骤一、建立非线性不确定时滞主动悬架系统模型;步骤二、推导基于指令滤波器的自适应反步递推控制器;步骤三、调节自适应反步递推控制器的控制增益参数等步骤完成的。本发明应用于汽车主动悬架控制领域。
-
公开(公告)号:CN105291747A
公开(公告)日:2016-02-03
申请号:CN201510505243.5
申请日:2015-08-17
Applicant: 哈尔滨工业大学
IPC: B60G17/018
Abstract: 一种具有死区执行器的主动汽车悬架控制方法,本发明涉及主动汽车悬架控制方法。本发明是要解决现有技术在路面不平的路况下,无法达到保持舒适性的要求以及没有考虑在控制器的设计过程之中,导致系统的实际性能有所降低的问题,而提出的一种具有死区执行器的主动汽车悬架控制方法。该方法是通过步骤一、建立主动悬架系统中执行器死区的数学模型;步骤二、建立具有死区特性执行器的1/4的汽车主动悬架模型;步骤三、利用死区特性执行器的1/4的汽车主动悬架模型设计死区补偿控制器;步骤四、采用Lyapunov函数对1/4汽车悬架系统中引入死区补偿控制器后的闭环系统进行验证等步骤实现的。本发明应用于主动汽车悬架控制领域。
-
公开(公告)号:CN103558761A
公开(公告)日:2014-02-05
申请号:CN201310572538.5
申请日:2013-11-15
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种具有控制器输入饱和的非线性化学反应循环不确定时滞系统的控制方法,涉及一种具有控制器输入饱和的非线性化学反应循环不确定时滞系统的控制方法。解决现有技术在控制非线性化学反应循环不确定时滞系统时系统不稳定的问题。本发明中的控制方法是按照建立化学反应循环不确定时滞悬架系统的模型、设计基于指令滤波器的自适应反步递推控制器、调节控制器的设计控制参数三个步骤进行。本发明用于非线性化学反应循环不确定时滞系统的控制。
-
公开(公告)号:CN103522863A
公开(公告)日:2014-01-22
申请号:CN201310533413.1
申请日:2013-11-01
Applicant: 哈尔滨工业大学
IPC: B60G17/015
Abstract: 一种汽车主动悬架系统的执行器输入饱和控制方法,本发明涉及一种执行器输入饱和控制方法。本发明是要解决设计模型较为简单;无法满足汽车悬架系统的执行器饱和控制;无法应对不确定性参数的影响而提出了一种汽车主动悬架系统的执行器输入饱和控制方法。该方法是通过步骤一、建立非线性不确定时滞主动悬架系统模型;步骤二、推导基于指令滤波器的自适应反步递推控制器;步骤三、调节自适应反步递推控制器的控制增益参数等步骤完成的。本发明应用于汽车主动悬架控制领域。
-
公开(公告)号:CN103072440A
公开(公告)日:2013-05-01
申请号:CN201310021368.1
申请日:2013-01-21
Applicant: 哈尔滨工业大学
IPC: B60G17/00
Abstract: 一种汽车主动悬架系统的控制方法,它涉及一种控制方法,具体涉及一种汽车主动悬架系统的控制方法。本发明为了解决现有悬架控制技术设计模型较为简单,且多为单目标控制,无法应对外界不确定干扰及未建模动态的问题。本发明的具体步骤如下:建立非线性主动悬架模型;设计非线性鲁棒控制器;调节增益k1,k2,ε1,ε2以保证所有约束都限制在允许的范围内,即可实现控制约束。本发明用于汽车主动悬架系统的控制和稳定。
-
-
-
-
-
-
-
-
-