-
公开(公告)号:CN106127767B
公开(公告)日:2019-06-07
申请号:CN201610470536.9
申请日:2016-06-24
Applicant: 南京理工大学
Abstract: 本发明公开了一种针对傅立叶叠层显微成像技术的位置校正方法,首先摄一组低分辨率图像,对物体的高分辨率频谱进行初始化,并初始化迭代次数j=1;计算第j次迭代的更新范围Sj;对更新范围Sj内的所有图像进行更新,更新前利用模拟退火法校正每幅图像对应的频谱孔径位置;第j次迭代完成后,利用非线性回归法更新LED阵列的位置参数,重新对物体的高分辨率频谱进行初始化;j=j+1,若更新范围Sj不包含所有图像,回到迭代步骤,当更新范围Sj包含所有图像以后,执行下一步;继续迭代至少3次,每次迭代完不进行频谱初始化,最终获得物体的高分辨率光强和相位图。本发明避免了LED阵列定位误差对重构结果的影响,提高了傅立叶叠层显微成像技术重构的图像质量。
-
公开(公告)号:CN109580457A
公开(公告)日:2019-04-05
申请号:CN201811292260.5
申请日:2018-11-01
Applicant: 南京理工大学
IPC: G01N15/14
Abstract: 本发明公开了一种基于LED阵列编码照明的三维衍射层析显微成像方法,首先采集原始强度图像,通过移动载物台或利用电控变焦透镜采集在不同离焦位置下的三组强度图像堆栈,然后通采集待测物体在不同离焦位置下的强度图像堆栈,对任意形状照明的显微成像系统的三维相位传递函数进行推导,得到在不同相干系数下的圆形和环状照明下显微系统的三维相位传递函数,并对三维衍射层析定量折射率反卷积重构,对三维散射势函数进行逆傅里叶变换,将散射势函数转换为折射率分布,即可得到被测物体的定量三维折射率分布。本发明实现了对细胞、微小生物组织等样品高分辨率高信噪比三维衍射层析显微成像。
-
公开(公告)号:CN105424561B
公开(公告)日:2018-10-02
申请号:CN201510945425.4
申请日:2015-12-16
Applicant: 南京理工大学
IPC: G01N15/02
Abstract: 本发明公开了一种基于LED光源的无透镜粒子显微定位装置及其方法,LED光源、样品摆放槽、CMOS或CCD相机传感器,两个以上的LED光源设置在样品摆放槽上方不同的位置,实现不同的角度对样品进行照射;样品摆放槽设置在相机传感器的上方,样品摆放槽的下表面与相机传感器之间的距离尽量小,且两者保持平行以保证干涉图像质量。本发明的装置结构简单,兼具快速准确,简洁高效并且成本低;通过数值传播与判定法法实现粒子位置与尺寸信息提取还原,实时记录多粒子信息,实现了粒子追踪。
-
公开(公告)号:CN108195313A
公开(公告)日:2018-06-22
申请号:CN201711481545.9
申请日:2017-12-29
Applicant: 南京理工大学
IPC: G01B11/25
Abstract: 本发明公开了一种基于光强响应函数的高动态范围三维测量方法,该方法首先搭建系统,投影仪投射五幅不同亮度的黑白图像到被测物体上,相机同步拍摄被测物体反射的黑白图像,使用最小二乘法求解被测物体的光强响应函数,然后根据响应函数求出的被测物体的光强响应函数来生成多组三步相移光栅,并使用投影仪将多组三步相移光栅投射至被测物体,相机同步拍摄被测物体反射的相移光栅图像,将拍摄得到的相移光栅图像进行图像融合,计算绝对相位,最后结合步骤一得到的相机透视投影矩阵和投影仪透视投影矩阵,恢复出被测物体的三维形貌。本发明避免了传统多曝光法的图像数据冗余,三维重构计算量小,提高了测量效率。
-
公开(公告)号:CN108169173A
公开(公告)日:2018-06-15
申请号:CN201711484784.X
申请日:2017-12-29
Applicant: 南京理工大学
IPC: G01N21/41
Abstract: 本发明公开了一种基于LED阵列照明的大视场高分辨三维傅里叶叠层衍射层析显微成像方法,首先进行原始强度图像采集,根据LED阵列中每颗LED在空间中的坐标位置计算出在照明系统中每个LED灯对应的入射光的空间频率,然后初始化被测物体的大视场高分辨三维频谱,且该初始化矩阵满足每个方向上的最小采样数与最终的成像分辨率要求,并将每个照明角度下所拍摄的强度图像迭代至初始化的三维频谱中,并进行多轮迭代,迭代得出被测物体的三维频谱,并将该三维频谱变换至空域,最终得到被测的三维物体大视场高分辨的折射率信息分布。本发明无须采用高放大倍率的物镜,在保证较大的成像视场前提下也可达到较高的重构分辨率。
-
公开(公告)号:CN107966212A
公开(公告)日:2018-04-27
申请号:CN201711484824.0
申请日:2017-12-29
Applicant: 南京理工大学
IPC: G01J9/00
Abstract: 本发明公开了一种非均匀性光强下光强传输方程的无边界误差求解方法,该方法首先初始化光强的轴向微分以及相位值,然后计算得到的非精确的相位值以及其所对应的光强轴向微分值,获得当前迭代后的光强轴向微分值与上一轮的光强轴向微分值之间的残差,每次迭代完成后,判断光强轴向微分误差以及所对应的相位残差是否足够小,当满足停止迭代条件时,得到的相位值就是所求的精确相位值,能够准确的求解在非均匀光强下的光强传输方程,稳定并且精确地获得待测物体相位。本发明能够高效准确地求解出相位值,降低了传统方法采用Teague辅助函数所引起的求解误差(称为相位差异),尤其是在边界处求得的相位误差。
-
公开(公告)号:CN107395933A
公开(公告)日:2017-11-24
申请号:CN201710712019.2
申请日:2017-08-18
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于LCOS空间光调制器的可编程孔径成像系统及其利用该系统进行超分辨重构方法,该系统包括空间光调制器、光分束器、透镜二、相机、透镜一、成像主透镜组,所述的透镜二、光分束器及透镜一构成4f系统反射式光路结构,光分束器与透镜二、透镜一的夹角均为45°,透镜二、透镜一分别与光分束器的距离相等;将成像主透镜组的孔径平面成像到空间光调制器上,空间光调制器处于透镜一的后焦面上,空间光调制器同时也处于透镜二的前焦面;相机位于4f系统透镜二的后焦面。本发明不需任何机械扫描装置,结构简单,测量快速,操作简易,可稳定精确测量;采用的是LCOS空间光调制器,避免了光栅衍射效应。
-
公开(公告)号:CN107367244A
公开(公告)日:2017-11-21
申请号:CN201710600109.2
申请日:2017-07-21
Applicant: 南京理工大学
IPC: G01B11/24
CPC classification number: G01B11/2433
Abstract: 本发明公开了一种基于时间相位解缠的设计最优条纹序列方法,首先建立投影仪系统轻微离焦状态下的三维重构的噪声模型,并且对投影仪系统的频率响应函数进行测定、曲线拟合,根据建立的噪声模型以及拟合出来的频率响应函数确定编码的最优条纹频率;然后推导出时间相位解缠过程中的阈值条件,且根据该阈值条件推导出不同相移步数的频帧比公式,根据该公式选取最优的相移步数组合;最后根据时间相位解缠过程中的阈值条件,推导出低频辅助条纹频率跟高频条纹频率之间的关系式,根据该关系式,逐一确定各级条纹的频率。本发明通过对投影仪系统的频率响应函数进行检测,找到用来编码的最优的条纹频率fopt,以提高三维测量的精度。
-
公开(公告)号:CN104765138B
公开(公告)日:2017-09-29
申请号:CN201510186306.5
申请日:2015-04-17
Applicant: 南京理工大学
Inventor: 张佳琳 , 左超 , 孙佳嵩 , 范瑶 , 陶天阳 , 孔富城 , 陈钱 , 顾国华 , 张玉珍 , 冯世杰 , 张力广 , 胡岩 , 陈冬冬 , 林飞 , 杨洋 , 田晨 , 张良
Abstract: 本发明公开了一种基于LED阵列的多模式显微成像系统及其方法,将LED阵列作为显微系统光源,产生可控多角度照明光、可控照明孔径,实现明场成像、暗场成像和差分相衬成像。本发明可实现的多模式成像包括明场、暗场和差分相衬成像三种成像模式,且实现明场成像、暗场成像和差分相衬成像的同时无需往传统显微镜的成像光路中加入任何附加光学元件,从而大大简化了光学系统,利用LED阵列使得显微镜具有照明孔径、照明角度和光源相干性灵活可调的能力。
-
公开(公告)号:CN105066907B
公开(公告)日:2017-09-01
申请号:CN201510445910.5
申请日:2015-07-27
Applicant: 南京理工大学
IPC: G01B11/25
Abstract: 本发明提出一种针对傅里叶轮廓术的载频相位去除方法,将生产的正弦光栅条纹通过投影仪投射至被测物体表面,使用摄像机拍摄经过被测物体表面调制后的条纹图像,对条纹图像做二维傅里叶变换,使用汉宁窗对傅里叶频谱的正一级频谱进行滤波,将滤波后获得的正一级谱移频至频谱中心,并进行二维逆傅里叶变换获得包含载频相位与被测物相位的光场分布;对提取的载频相位和被测物相位做主成分分析,获得的载频相位;去除载频相位,获得只包含被测物体相位的光场分布,实现载频相位的去除。本发明可以去除以非线性分布的载频相位,且无需人工干预。
-
-
-
-
-
-
-
-
-