-
公开(公告)号:CN112666697A
公开(公告)日:2021-04-16
申请号:CN201910977145.X
申请日:2019-10-15
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于彩色复用照明的单帧差分相衬定量相位成像方法,采用彩色复用照明方案实现单帧差分相衬定量相位成像,单帧彩色复用照明方案具体方法采用红r、绿g、蓝b三个照明波长同时照射样品,将样品多个方向的频率信息转换为单幅彩色图像不同通道上的强度信息,通过通道分离得到所有方向上的频率信息。本发明的复用彩色照明方案仅需一幅采集图像,增强了单帧差分相衬成像的相位传递函数在整个频率范围内的传递响应,实现了高对比度、高分辨率、高稳定性的实时动态定量相位成像,并给出了一种交替照明的策略,在相机采集极限速度上实现了完全各向同性的成像分辨率。
-
公开(公告)号:CN111343376A
公开(公告)日:2020-06-26
申请号:CN201811556725.3
申请日:2018-12-19
Applicant: 南京理工大学
Abstract: 本发明公开了一种基于透射式双缝孔径编码成像系统及其超分辨方法,由成像主透镜组、4f中继透镜一、可编程LCD面板、4f中继透镜二、相机组成,通过拍摄一系列低分辨率图像后在傅里叶域进行凸集投影迭代,直至收敛,即可获得超分辨图像。本发明相对于现有可编程孔径成像系统,该装置不需任何机械扫描装置,结构简单,测量快速,操作简易,可稳定精确测量;相对于反射式编码成像系统,采用透射式编码成像系统可减少入射光的损失,提高成像质量。
-
公开(公告)号:CN108051930B
公开(公告)日:2020-05-22
申请号:CN201711484825.5
申请日:2017-12-29
Applicant: 南京理工大学
Abstract: 本发明公开了一种大视场超分辨率动态相位无透镜显微成像装置与重构方法,该装置包括依次设置的部分相干或者相干光源、平行平板、样品台、相机构成成像系统,部分相干或者相干光源安放于整个成像系统的最上方,并且光源的发光中心位置位于整个成像系统的光轴上。本发明不借助于任何精密的亚像素位移器件,能够实现大步进小位移,从而简化系统结构,缩小显微镜体积,极大地降低成本;该方法降低了对机械结构精度的要求,对采集的图像中的噪声具有很强的抵御能力,能够非常稳定并且准确地重建出大视场超分辨率的相位图像。
-
公开(公告)号:CN110824689A
公开(公告)日:2020-02-21
申请号:CN201911059420.6
申请日:2019-11-01
Applicant: 南京理工大学
IPC: G02B21/36
Abstract: 本发明公开了一种全自动显微图像景深拓展系统及其方法,包括图像采集部分和自动控制部分,所述图像采集部分包括彩色相机、筒镜、物镜、载物台、光源;所述自动控制部分包括步进电机、导轨、传感器、中间设备,整个系统是在每个视野的聚焦面上下范围内等间隔不同位置采集图像,将这一系列图像经过图像融合处理后得到景深拓展后的结果。本发明采用基于图像融合的方式进行景深拓展,从而获得每个视野的最清晰图像,相对传统的景深拓展方式不会削弱光学系统的光通量和分辨率;图像采集、图像融合全自动化,并且实现的融合算法简单不会丢弃图像细节信息。
-
公开(公告)号:CN105066906B
公开(公告)日:2018-06-12
申请号:CN201510444695.7
申请日:2015-07-24
Applicant: 南京理工大学
IPC: G01B11/25
Abstract: 本发明提出一种快速高动态范围三维测量方法,使用计算机生成四幅光栅条纹;分别在投影仪光轴和摄像机光轴上放置一块偏振镜,转动任意一块偏振镜,将投影仪光轴和摄像机光轴之间的夹角调节为90度;使用投影仪将生成的四幅光栅条纹投射至被测物,使用摄像机同步拍摄被被测物反射生成的四幅条纹图像;对四幅条纹图像进行分析,获得高频包裹相位和低频相位;对高频包裹相位去包裹,获得高频去包裹后相位,根据去包裹后相位重建被测物体三维场景。本发明可以对动态场景实现高动态范围的三维测量。
-
公开(公告)号:CN107966801A
公开(公告)日:2018-04-27
申请号:CN201711484822.1
申请日:2017-12-29
Applicant: 南京理工大学
CPC classification number: G02B21/084 , G02B21/06 , G02B21/365
Abstract: 本发明公开了一种基于环形照明的高速傅立叶叠层成像装置及重构方法,装置采用了环形LED板作为照明光源,同时圆环上的每颗LED的照明数值孔径都与物镜的数值孔径相等,并依次通过LED单元亮度标定、LED位置标定与校正、原始图像采集、原始图像预处理及高分辨率图像初始化实现迭代重构。本发明在圆环上各个LED的照明角度都与物镜的数值孔径内切,使得相位传递函数完全覆盖了相位频谱的所有低频部分,从而只需要拍摄少量的明场低分辨率图片,就能够非常稳定并且准确地重建出物体大视场高分辨率的相位分布,非常适合用于活细胞的无标记高速定量相位显微成像。
-
公开(公告)号:CN105182514B
公开(公告)日:2018-03-09
申请号:CN201510632805.2
申请日:2015-09-29
Applicant: 南京理工大学
IPC: G02B21/06
Abstract: 本发明公开了一种基于LED光源的无透镜显微镜及其图像重构方法,依次设置LED光源、针孔、样品台、相机构成成像系统,LED光源安放于整个成像系统的最下方,并且其光敏面位于整个成像系统的光轴上;针孔紧靠并正对着LED光源的发光面,该LED光源作为无透镜显微镜的照明光源,中心波长为λ单色LED或红绿蓝三色LED,首先以LED作为无透镜显微镜的照明光源,拍摄所需要的光强图像,然后通过迭代法相位恢复得到待测光波场的相位信息,最后通过计算机实现数值反传播获得待测物体的聚焦图像。本发明不借助于任何成像光学元件,从而简化系统结构,缩小显微镜体积,大大降低成本。
-
公开(公告)号:CN106204434A
公开(公告)日:2016-12-07
申请号:CN201610474881.X
申请日:2016-06-24
Applicant: 南京理工大学
CPC classification number: G06T3/4053 , G06T5/50 , G06T2207/10061
Abstract: 本发明公开了一种面向大视场高分辨率显微成像的图像迭代重构方法,首先LED阵列作为显微镜的照明光源,顺次点亮其中每一个LED元素,照射样品后采集相对应的图像;利用LED阵列中位于中心的LED元素照射样品所拍摄到的低分辨率图像来初始化高分辨率图像的振幅与相位;采用增量梯度法将所采集的每一幅图像在频域中逐一进行合成孔径运算;以代价函数值为判据对增量梯度迭代系数进行更新;当增量梯度迭代系数小于一个给定的阈值时,停止迭代。本发明在于其无需复杂的参数调节,并对采集图像中的噪声具有很强的抵御能力,能够非常稳定并且准确地重建出大视场高分辨率图像。
-
公开(公告)号:CN105158889A
公开(公告)日:2015-12-16
申请号:CN201510631727.4
申请日:2015-09-29
Applicant: 南京理工大学
Abstract: 本发明公开一种基于LED阵列照明的透射体视显微成像装置及其方法,LED阵列作为显微镜成像系统的照明光源,计算机控制电路控制装置使LED阵列显示两个圆形图案,分别以不同角度照射待测样品;两个圆形图案光照之间的夹角构成相当于人们用双目观察一个物体时所形成的视角,该两个圆形图案照明分别对应左右眼的两通道图像,将这两通道图像通过显示器分别显示,观察者佩戴相配套的3D眼镜即可形成所观测物体的三维空间的立体视觉图像。本发明以单通道光路实现了体式显微成像,单通道光路简化了系统设计,有效降低成本;方便实现红/蓝或基于时分复用的三维立体显示/观察方式。
-
公开(公告)号:CN104796609A
公开(公告)日:2015-07-22
申请号:CN201510186030.0
申请日:2015-04-17
Applicant: 南京理工大学
IPC: H04N5/232
Abstract: 本发明公开了一种基于最优哈达玛编码的大视场高分辨率显微成像方法,首先利用计算机生成所需的最优哈达玛编码的矩阵,然后采用LED阵列作为显微镜光源,显示最优哈达玛编码图案,并用相机拍摄一系列待测样品在不同照明角度下的低分辨率显微图像,再根据最优哈达玛矩阵求解出待测样品受到单个角度照明时的低分辨率显微图像,最后利用频域合成孔径技术将多幅大视场低分辨率图像合成一幅大视场高分辨率图像。本发明既能降低相机所需的曝光时间,提高系统的图像采集速度,又能抑制噪声,提高系统采集的图像质量。
-
-
-
-
-
-
-
-
-