一种农田作物生长信息网络化采集系统及其构建方法

    公开(公告)号:CN103024939A

    公开(公告)日:2013-04-03

    申请号:CN201210554396.5

    申请日:2012-12-19

    CPC classification number: Y02D70/10 Y02D70/20

    Abstract: 本发明公开了一种农田作物生长信息网络化采集系统,包括N个作物生长感知节点、1个汇聚节点;N个感知节点与汇聚节点之间通过无线信道建立自组织无线传感网络,各感知节点通过自组织无线传感网络将采集的作物生长信息传输至汇聚节点;汇聚节点部署于N个感知节点的中心位置,通过自组织无线传感网络向各监测点发布无线传感器网络管理任务,控制作物生长感知节点的工作状态,协调各感知节点采集数据的传输与汇聚;本发明还提出一种农田作物生长信息网络化采集系统构建方法,根据感知节点的能耗模型动态地管理工作节点,实现了农田开放环境下作物生长信息长时间、低功耗采集。

    一种高精度作物生长信息监测仪及其检测方法

    公开(公告)号:CN102967562A

    公开(公告)日:2013-03-13

    申请号:CN201210472211.6

    申请日:2012-11-20

    Abstract: 本发明公开了一种高精度作物生长信息监测仪,包括光谱传感器(1)、标准反射率白板(13)、信号采集器(5)、屏蔽导线(4),以及由水平支架(2)、活动支撑杆(3)组成的支架;其中,光谱传感器固定于水平支架的一端,水平支架的另一端与活动支撑杆活动连接,信号采集器紧固于活动支撑杆上位于人眼易于观察的高度;光谱传感器的输出端通过屏蔽导线串接信号采集器;标准反射率白板设置于光谱传感器下方且与光谱传感器垂直。本发明还公开了一种基于高精度作物生长信息监测仪的检测方法。本发明能够实时、无损获取作物氮含量、氮积累量、叶面积指数和叶干重多个生长指标,不仅结构简单,而且提高了仪器的稳定性和测量精度。

    基于修订的区域气候模式数据的小麦产量预测方法

    公开(公告)号:CN102722766A

    公开(公告)日:2012-10-10

    申请号:CN201210179577.4

    申请日:2012-06-04

    Abstract: 本发明提供了一种基于修订的区域气候模式数据的小麦产量预测方法,通过观测的历史逐日气象数据,对未来区域气候模式修订的日最高最低温度、降雨强度、降雨频率、太阳辐射数据进行修订,使区域气候的数据既保持其原有的年际变化规律,又符合该站点历史气象变化规律,解决了区域气候的模拟值与观测数据之间系统性偏差、太少的连续干旱天数、无法重现高降雨事件以及时空尺度上的不匹配等带来的问题;进一步将修订后的区域气候模式数据与小麦生长模拟系统相结合,有效地提高了小麦成熟期和产量的预测精度,实现了小麦生长模拟系统和区域气候模式尺度上的统一。

    一种根据小麦植株吸氮量核心波长确定适宜带宽的方法

    公开(公告)号:CN102636438A

    公开(公告)日:2012-08-15

    申请号:CN201210109596.X

    申请日:2012-04-16

    Abstract: 本发明属于小麦生长无损监测诊断领域,提供了一种根据小麦植株吸氮量核心波长确定适宜带宽的方法,该方法基于不同品种、密度、氮肥和播期的小麦大田试验数据,通过在确定的核心波段范围内核心波段和带宽同时变化条件下对模型预测精度与准度的影响,确定了各核心波长的适宜段宽;并且得到以下结论:最适的带宽与特定的核心波长有关;而且最适带宽不仅与特定的核心波长有关,还与构成植被指数的另一个波长相关,具有重要的理论意义和实践意义,非常值得应用和推广。

    一种稻麦叶片氮含量光谱监测模型建模方法

    公开(公告)号:CN102175618A

    公开(公告)日:2011-09-07

    申请号:CN201110033113.8

    申请日:2011-01-31

    CPC classification number: Y02A40/12

    Abstract: 本发明公开了一种稻麦叶片氮含量光谱监测模型建模方法,属于精准农业中作物生长信息无损监测领域。将野外高光谱辐射仪采集到的稻麦冠层叶片反射光谱数据与稻麦冠层叶片氮含量数据相融合,建立基于窄波段与宽波段相结合面向稻麦不同生育期的冠层叶片氮含量光谱监测模型。本发明利用多年、多点的稻麦田间试验数据,构建面向稻麦拔节至孕穗期、抽穗至灌浆期的最佳植被指数;挖掘稻麦冠层叶片氮含量共性特征波段及带宽。模型涵盖了稻麦不同品种、不同氮素水平,普适性好,利用独立年份的数据验证模型,模型的准确性高。

    机载式作物氮素信息高密度无损采集方法

    公开(公告)号:CN101666741A

    公开(公告)日:2010-03-10

    申请号:CN200910034988.2

    申请日:2009-09-17

    Abstract: 本发明涉及一种机载式作物氮素信息高密度无损采集方法,属于作物生产技术领域。主要包括采用作物氮素信息传感变送器采集作物冠层叶片氮素信息、采用随动自适应平衡调节器自动调整保持传感变送器在适宜采集的姿态、采用可调悬挂支架悬挂并调节传感变送器使之处于适宜采集的位置和方位、采用作物氮素信息无线接收器接收和存储发自传感变送器的氮素信息。机载式作物氮素信息连续采集方法能够实现以机械化的作业方式高密度获取大范围农田的“面”上信息,是目前实际生产中迫切需要的较适用的农业信息装备。

    一种播种单体播种深度与镇压控制方法及其控制装置

    公开(公告)号:CN119717915A

    公开(公告)日:2025-03-28

    申请号:CN202411838909.4

    申请日:2024-12-13

    Abstract: 本发明公开了一种播种单体播种深度与镇压控制方法及其控制装置,方法包括:获取控制参数数据,控制参数数据包括播种模式和/或镇压/下压参数;基于控制参数数据确定作业模式;当作业模式为下压模式以及镇压模式,分别基于镇压力传感器采集的数据以及下压力传感器采集的数据实时调节镇压液压缸以及下压液压缸伸缩,以保持目标镇压力以及目标下压力;当作业模式为下压/镇压协作模式,同时获取下压力传感器与镇压力传感器采集的数据,并同时条件下压液压缸以及镇压液压缸伸缩,以保持目标下压力以及保持目标镇压力。本发明的方案能够实现下压模式、镇压模式及下压/镇压协作模式的按需切换,相较于现有技术中固定模式,具备更高的适应性和灵活性。

    一种土壤原位自动检测机器人以及土壤原位检测方法

    公开(公告)号:CN119619460A

    公开(公告)日:2025-03-14

    申请号:CN202411848932.1

    申请日:2024-12-16

    Abstract: 本发明提供了一种土壤原位自动检测机器人以及土壤原位检测方法,包括机器人底盘以及安装在机器人底盘上的土壤超声辅助钻削系统、土壤原位检测系统、横移部件、定位导航系统、工控机。机器人底盘设有前后两对扭矩单独分配的差速轮;土壤超声辅助钻削系统设有超声辅助钻削机械臂,旋转的钻削机械臂叠加超声机械振动对土壤实施土壤超声钻削操作;土壤原位检测系统设有升降机、土壤原位检测机械臂、激光诱导击穿光谱定量分析系统及多种土壤传感器;土壤超声辅助钻削系统和土壤原位检测系统均安装在滑块上;定位导航系统包括导航定位系统以及避障系统。本发明机器人将激光诱导击穿光谱系统及多种土壤传感器结合,实现不同深度土壤的信息获取。

    一种活体作物叶片表型获取方法、装置、系统及应用

    公开(公告)号:CN119251283A

    公开(公告)日:2025-01-03

    申请号:CN202411789837.9

    申请日:2024-12-06

    Abstract: 本发明提供了一种活体作物叶片表型获取方法、装置、系统及应用,方法包括如下步骤:S1、获取活体作物叶片的表型图像;S2、绘制表型图像的叶片掩码图像;S3、将叶片掩码进行增强处理并得到训练集和测试集;S4、利用训练集训练Segformer神经网络模型;S5、利用经过训练的Segformer神经网络模型对测试集进行测试,测得叶片的分割掩码;S6、确定分割掩码的像素点数量;S7、根据像素点数量和预设像素面积计算叶片面积。本发明能够实现现场活体作物叶片表型测量及图像绘制的目的,避免了叶片离体失水卷曲而造成的测量不准确的问题,提高了测量的准确性,为后续在缺素类型和病害严重程度方面的研判提供条件。

Patent Agency Ranking