-
公开(公告)号:CN118016748A
公开(公告)日:2024-05-10
申请号:CN202410030541.2
申请日:2024-01-09
Applicant: 北京邮电大学
IPC: H01L31/102 , H01L31/0352 , H01L31/0232
Abstract: 本发明提供一种单行载流子光探测器,包括:依次设置于半导体材料衬底上方的第一电极接触层、电子收集层和崖层、设置于崖层上方的吸收层、设置于吸收层上方的电子扩散阻挡层、设置于电子扩散阻挡层上方的第二电极接触层、设置于第二电极接触层上方的光学散射结构和设置于光学散射结构上方的光学薄膜层;光学薄膜层构成波导结构的上包层,电子收集层构成波导结构的下包层,光学散射结构用于使得入射光从垂直入射方向进行散射,并将部分散射光耦合进单行载流子光探测器构成的波导结构中进行横向传播,以增加了入射光在吸收层的传播距离。本发明提供的单行载流子光探测器,能够有效提高单行载流子光探测器的响应度。
-
公开(公告)号:CN115458618A
公开(公告)日:2022-12-09
申请号:CN202211193879.7
申请日:2022-09-28
Applicant: 北京邮电大学
IPC: H01L31/0352 , H01L31/0216 , H01L31/102 , H01L31/109
Abstract: 本申请涉及半导体光电器件技术领域,提供一种单行载流子光电二极管。包括依次连接的p型接触层、电子阻挡层、吸收层、间隔层、崖层、收集层、子收集层、n型接触层;以及位于所述p型接触层上的p电极与位于所述n型接触层上的n电极;其中,所述收集层的厚度为1300纳米至1700纳米。本申请通过选取厚度为1300纳米至1700纳米的收集层,将p型接触层、电子阻挡层、吸收层、间隔层、崖层、收集层、子收集层、n型接触层依次连接,并在p型接触层与n型接触层上分别设置p电极与n电极,构成单行载流子光电二极管,降低单行载流子光电二极管中的寄生电容,提高单行载流子光电二极管的总带宽,以提高单行载流子光电二极管的工作效率。
-
公开(公告)号:CN115292877A
公开(公告)日:2022-11-04
申请号:CN202210716209.2
申请日:2022-06-22
Applicant: 北京邮电大学
Abstract: 本发明提出了一种基于拓扑优化的光子器件自适应逆向设计方法,在设计过程中,采用兼具差异化处理特性和动态调整特性的自适应投影函数。本发明在提升了光子器件设计效率的基础上,保证逆向设计得到的光子器件具有优秀的性能指标,此外设计得到的光子器件已完全二值化,省掉了额外的离散优化,不仅解决了离散优化导致光子器件品质因数劣化问题,而且还简化了设计流程。进一步地,本发明逆向设计得到的光子器件物理尺寸小、易于规模化集成、可利用常规半导体光刻工艺进行制备,有望推动光子集成芯片尤其是硅基光子集成芯片的发展。
-
-
公开(公告)号:CN111751909A
公开(公告)日:2020-10-09
申请号:CN202010502084.4
申请日:2020-06-04
Applicant: 北京邮电大学
Abstract: 本发明实施例提供一种具有纳米间隙层的超透镜及超分辨成像系统,该超透镜包括周期性薄膜结构和至少一层纳米间隙层,其中:所述周期性薄膜结构是由金属层和介质层堆叠构成的,所述纳米间隙层的两侧为所述介质层。本发明实施例通过引入纳米间隙层,使得坡音廷矢量在纳米间隙层与介质层的交界面处发生传播方向的偏折,从而导致物像的主瓣和旁瓣的对数比增大,大幅改善两个及两个以上物体成像时,多个像点的旁瓣与旁瓣之间以及旁瓣与主瓣之间互相重叠导致的干扰问题,并能对静止的物体和/或移动的物体进行突破衍射极限的纳米级超高分辨率三维成像,在纳米材料实时成像、生物医学成像和超精密纳米光刻等领域具有重要应用前景。
-
公开(公告)号:CN110544732A
公开(公告)日:2019-12-06
申请号:CN201910807033.X
申请日:2019-08-29
Applicant: 北京邮电大学 , 河北光森电子科技有限公司
IPC: H01L31/0352 , H01L31/0304 , H01L31/109
Abstract: 本发明实施例提供一种单行载流子光电二极管,该单行载流子光电二极管通过将传统的收集区中的部分结构进行湿氮氧化工艺,获得部分氧化型收集区。由于经氧化工艺的部分结构形成的氧化物绝缘层的折射率较低,因此降低了单行载流子光电二极管的寄生结电容,减小了RC时间常数,由此提高了单行载流子光电二极管的响应速度。
-
公开(公告)号:CN109817788A
公开(公告)日:2019-05-28
申请号:CN201811556261.6
申请日:2018-12-19
Applicant: 北京邮电大学
Abstract: 本发明提供了一种管壁内嵌化学合成量子点的管状微腔及其制备方法。该管状微腔为内嵌化学合成量子点的无源介质薄膜通过释放应力自卷曲形成的中空管状结构;所述化学合成量子点完全被所述无源介质薄膜包裹。本发明将化学合成量子点嵌设在自卷曲微米管的管壁中,相对于外延生长量子点方式,化学合成量子点的尺寸和分布的可控性和均匀性良好,发光特性优异,制作成本很低且适合大规模制备;特别是,本发明相对于将化学合成量子点包覆在自卷曲微米管管壁表面方式,不仅大幅度提高了量子点发光与微腔谐振模式之间的耦合效率,还避免了化学合成量子点因受到外界气体或液体环境影响而导致微腔光学性能恶化甚至失效的情况。
-
公开(公告)号:CN109459817A
公开(公告)日:2019-03-12
申请号:CN201811453417.8
申请日:2018-11-30
Applicant: 北京邮电大学
IPC: G02B6/136
Abstract: 本发明实施例提供了一种单片硅基光电集成芯片的制备方法,通过在SOI衬底上刻蚀图形窗口来生长激光器结构,通过在SOI衬底中的硅波导层上生长探测器结构,激光器和探测器通过刻蚀出的硅波导结构连接,从而实现了片上激光器、探测器以及硅波导结构的集成。本发明实施例中提供的单片硅基光电集成芯片的制备方法,通过直接刻蚀图形窗口来生长激光器结构,具有高重复性和可靠性,能够大规模的制备,大大降低了成本,具有很好的应用前景,弥补了目前无法通过直接选区外延的方式实现可实用的片上光电集成的空白,特别是弥补了激光器与其他器件的片上集成问题。
-
公开(公告)号:CN106784028A
公开(公告)日:2017-05-31
申请号:CN201611249948.6
申请日:2016-12-29
Applicant: 北京邮电大学
IPC: H01L31/02 , H01L31/0232 , H01L27/146
CPC classification number: H01L31/02 , H01L27/146 , H01L31/02325
Abstract: 本发明提供一种光电探测器阵列,包括具有光束分束功能的亚波长光栅,以及位于亚波长光栅上方的光电探测器组;所述亚波长光栅与光电探测器组间设有键合介质层。在处理大功率、高速、高动态范围的入射光信号时,其包含的高性能亚波长分束光栅将该光信号分为多束功率较小、动态范围较小的光信号并分别由光电探测器阵列中的各分布式光电探测器进行光电转换,各光电探测器产生的电信号在大电极处叠加从而还原原注入信号。本方案克服了单个光电探测器无法处理过大功率及过大动态范围的光信号的弊端,也克服了传统光电探测器阵列耦合方式及制备工艺复杂的缺点,相较于前两者具有工艺简单易于制备、饱和功率大、动态范围大、响应度高的特点。
-
公开(公告)号:CN106772797A
公开(公告)日:2017-05-31
申请号:CN201611184920.9
申请日:2016-12-20
Applicant: 北京邮电大学
IPC: G02B6/122
CPC classification number: G02B6/122
Abstract: 本发明提供一种单片集成收发一体光电芯片及集成芯片阵列,所述光电芯片包括衬底、光吸收单元和光发射单元;所述光发射单元的光激射波长为光电芯片的发射光谱区,所述光吸收单元吸收波长为光电芯片的吸收光谱区,所述吸收光谱区和所述发射光谱区不重叠;所述光吸收单元包括依次层叠于衬底上的第一半导体材料层、第二半导体材料层和第三半导体材料层,所述第三半导体材料上设有绝缘层,所述光吸收单元和光发射单元通过绝缘层电隔离;光发射单元包括第一反射镜、光学腔和第二反射镜,所述光学腔位于第一反射镜上,所述第二反射镜位于光学腔上。只应用一个光学腔,同时起到光发射上的谐振增强与光吸收上的高透滤波功能,实现光信号的发射与接收。
-
-
-
-
-
-
-
-
-