一种高加速度高精度线振动台

    公开(公告)号:CN112629564B

    公开(公告)日:2023-02-28

    申请号:CN202110013499.X

    申请日:2021-01-06

    Abstract: 本发明提供了一种高加速度高精度线振动台,属于仿真测试技术领域。本发明中用户在上位机发出控制指令传递给RTX实时控制系统,测频系统采样双气隙电机的位移信号和振动频率,RTX实时控制系统接收测频系统的反馈信号,RTX实时控制系统将控制指令发送给单相H桥拓扑逆变PWM驱动系统,单相H桥拓扑逆变PWM驱动系统驱动双气隙电机运动,双气隙电机带动对称多向静压气浮支撑系统运行。本发明支持动子进行高加速度高精度线振动运动,采用改进型零相位误差跟踪控制器,能较好的解决参数不确定性和设计偏差造成的影响,具有良好的鲁棒性,适合工程开发和应用。

    基于模糊滑模控制的无人机自主抗风智能控制方法

    公开(公告)号:CN110347036B

    公开(公告)日:2022-12-23

    申请号:CN201811155131.1

    申请日:2018-09-30

    Abstract: 本发明提供了基于模糊滑模控制的无人机自主抗风智能控制方法,属于飞行器地面仿真领域。本发明智能控制方法为:建立引入风速因子的无人机动力学公式;滑模变结构控制器的设计:通过设计一个滑动模态面s,以误差e和误差变化率为滑模面的变量,由李雅普诺夫定理验证滑模面的收敛性,保证无人机状态变量收敛到目标处;采用RBF神经网络对无人机模型中的近似项实现逼近;将角度θ、角速度作为神经网络的输入,并实时调整神经网络权值函数;通过模糊控制降低滑膜控制器的抖振。本发明利用神经网络的学习能力,实现对无人机模型中的近似项的动态跟踪,提高了准确性;针对控制器中的抖振现象,引入模糊控制提高了符号函数系数的线性化程度,提升了稳定性。

    行星探测捕获制动与器器分离物理跟踪装置与方法

    公开(公告)号:CN110456631B

    公开(公告)日:2022-12-09

    申请号:CN201910764539.7

    申请日:2019-08-19

    Abstract: 本发明提供了行星探测捕获制动与器器分离物理跟踪装置与方法,属于飞行器地面仿真领域。本发明地面控制系统通过电缆与二维运动系统、转动电机和视觉测量系统相连接,二维运动系统、转动电机以及视觉测量系统设在大理石平台上,二维运动系统上设置有转动电机,转动电机与视觉测量系统连接;将运动模拟器放在视觉测量系统下,给定一定的初速度后开始跟踪;将相机数据通过电缆发回到地面控制系统;地面控制系统上的工控机对数据进行处理,利用跟踪算法输出控制量;根据控制量对二维运动系统和转动电机进行运动控制。本发明实现了动态跟踪目标,相机也是在随着目标在动;实现了根据相机反馈,卡尔曼滤波和改进PID相结合的方法动态跟踪航天器的运动。

    一种微机械陀螺辅助的半球谐振陀螺捷联惯性导航系统摇摆基座无纬度对准方法

    公开(公告)号:CN115371680A

    公开(公告)日:2022-11-22

    申请号:CN202211078255.0

    申请日:2022-09-05

    Abstract: 本发明提供了一种微机械陀螺辅助的半球谐振陀螺捷联惯性导航系统摇摆基座无纬度对准方法,属于自动化技术领域里一种信号处理方法。本发明针对航海用的力反馈模式HRG捷联惯性导航系统在受到海浪冲击产生摇摆,载体姿态角速率超过HRG角速率测量范围,并且纬度信息未知的情况下,利用与HRG惯导系统同轴安装的MEMS陀螺作为角速率测量辅助设备,通过重力矢量几何约束和惯性系对准方法,解决船舶摇摆状况下初始对准与纬度估计的问题。本发明可以实现载体处于摇摆且纬度未知情况下的初始对准,对于运动状态和外界纬度信息有较低的要求,具有很高的自主性和鲁棒性。

    基于单磁信标的三维空间高精度定位装置与方法

    公开(公告)号:CN112050802B

    公开(公告)日:2022-10-18

    申请号:CN202010953825.0

    申请日:2020-09-11

    Abstract: 本发明提供了一种基于单磁信标的三维空间高精度定位装置与方法,属于定位定向方法技技术领域。本发明中磁信标在空间中产生待测磁场;总传感器模块为一个刚性整体,在总传感器模块中,一号、二号磁传感器模块和组合传感器模块相互之间刚性连接组成一个三角形结构整体且三个磁传感器的方向一致,上位机用于接收一号磁传感器模块传输的所在位置总磁场信息,进行数据处理,解算出二号磁传感器模块和组合传感器模块的可能位置,再根据位置坐标计算出理论场强,进而与实际测得场强作对比,获得被定位物体的三维位置信息。本发明安装简单,功耗低,可以任意旋转和移动,极大提高了实用性,定位精度高,可以达到在恶劣环境下自主定位定向的目的。

    基于三维气浮的惯性器件残余力矩测量装置及方法

    公开(公告)号:CN110542439B

    公开(公告)日:2022-10-14

    申请号:CN201910984134.4

    申请日:2019-10-16

    Abstract: 本发明提供了一种基于三维气浮的惯性器件残余力矩测量装置及方法,属于检测技术领域。本发明中台上系统和台下系统通过无线传输系统连接;台下系统包括台下数据采集与处理系统、服务器、机柜箱和供气系统;台上系统包括供电系统、惯性执行机构控制系统、惯性执行机构待测产品、台上数据采集与处理系统、残余力矩测试系统、振动隔离与支撑系统和真空控制系统,残余力矩测试系统由气浮转台、高精度传感装置和防倾覆及防护装置组成,高精度传感装置分别设置在气浮转台的竖直方向上和气浮转台外侧的水平方向上。本发明可模拟卫星平台在轨工作,提供模拟的空间力学环境,实时输出残余力矩,且适用于多种惯性器件的直接测量,数值计算少,精度高。

    基于多自由度运动模拟器的多航天器姿轨控地面全物理仿真系统

    公开(公告)号:CN114625027A

    公开(公告)日:2022-06-14

    申请号:CN202210259531.7

    申请日:2022-03-16

    Abstract: 本发明提供了一种基于多自由度运动模拟器的多航天器姿轨控地面全物理仿真系统,属于飞行器地面仿真试验领域。本发明多自由度双星伴飞模拟器模拟追踪星和目标星的伴飞运动。台上姿轨控制系统控制追踪星和目标星按指令达到预期的运行状态。动力学仿真机实时模拟两星在轨轨道/姿态动力学。相对导航系统感知两星相对运动状态,并对感知结果进行导航解算。无线数据传输系统实现台上台下系统间的数据交互。视景演示系统通过专业软件模拟运动模拟器的实时工况。本发明采用两台哑铃型气浮台模拟追踪星和目标星的姿态运动,从而实现平面两个自由度和姿态三个自由度的运动模拟,能够达到高精度仿真的目的,为小卫星伴飞控制方案验证提供了可靠的平台。

    行星探测捕获制动与器器分离全物理仿真实验装置与方法

    公开(公告)号:CN110426968B

    公开(公告)日:2022-02-22

    申请号:CN201910764524.0

    申请日:2019-08-19

    Abstract: 本发明提供了行星探测捕获制动与器器分离全物理仿真实验装置与方法,属于飞行器地面仿真领域。本发明地面监控与控制系统通过电缆与其他系统相连接,位置测量系统返回编码器的数据到地面监控与控制系统,地面监控与控制系统发送伺服电机的控制指令到运动模拟系统;视觉测量系统中的相机控制器通过RS422串口与地面监控与控制系统进行通讯,传输运动模拟器的位置信息反馈;视觉测量系统通过线缆与模拟引力生成系统连接,视觉测量系统采集模拟引力生成系统上运动模拟器的图像,运动模拟系统与模拟引力生成系统固定连接。本发明具有数学模拟不可比拟的优越性,会遇到不可预测问题,从而验证控制算法的可靠性与鲁棒性,提高工程实施的可靠性。

    一种六自由度空间微重力模拟装置及控制方法

    公开(公告)号:CN113928603A

    公开(公告)日:2022-01-14

    申请号:CN202111066731.2

    申请日:2021-09-13

    Abstract: 本发明提供了一种六自由度空间微重力模拟装置及控制方法,属于微重力模拟控制领域。本发明气缸活塞的顶部固定有气缸拉压力传感器,滚珠丝杠外侧的丝杠螺母与滚珠丝杠拉压力传感器连接,气缸拉压力传感器和滚柱丝杠拉压力传感器固定在连接平面的底部,连接平面上的中心固定哑铃式三轴气浮转台,哑铃式三轴气浮转台上固定有被模拟对象。本发明与现有微重力模拟装置相比,该系统采用滚珠丝杠和低摩擦气缸协同的交叉耦合作用进行垂直方向微重力模拟,使用哑铃式三轴气浮转台进行空间微重力模拟,神经网络与终端滑模变结构控制结合进行智能控制,提高了系统的控制精度及鲁棒性、拓展了模拟系统的运动范围和被模拟对象的运动姿态。

    基于迭代更新的单目相机位姿测量装置与方法

    公开(公告)号:CN109087355B

    公开(公告)日:2021-09-14

    申请号:CN201810626619.1

    申请日:2018-06-15

    Abstract: 本发明提供了基于迭代更新的单目相机位姿测量装置与方法,属于图像处理和高精度测量领域。本发明所述基于迭代更新的单目相机位姿测量装置中,相机支架与工业相机固定连接,工业相机放置在待测目标的上方,待测目标在运动平台上做二维平动和一维转动,工业相机的信号输出端与图像采集卡的信号输入端连接,图像采集卡的输出端与位姿测量工控机的输入端连接。基于迭代更新的单目相机位姿测量方法的具体步骤为:根据测量图像提取得到的二维测量数据反推三维世界坐标;通过位姿迭代更新的方式实现对待测目标的位姿测量。本发明提出的用于位姿测量系统测量精度标定的装置与方法,仅需拍摄一次测量图片即可获得大量测量数据,大大简化了测量精度标定过程。

Patent Agency Ranking