-
公开(公告)号:CN107290567A
公开(公告)日:2017-10-24
申请号:CN201710350326.0
申请日:2017-05-18
Applicant: 中北大学
CPC classification number: G01P15/18 , B81B7/02 , B81B2201/0235 , B81C1/0038 , B81C1/00523 , B81C3/001 , G01P15/123 , G01P2015/0862
Abstract: 本发明公开了一种具有抗过载能力的压阻式三轴加速度传感器,包括基片,所述基片的中心刻蚀出质量块(1)和八个矩形梁(2),所述质量块(1)上部边缘四边通过矩形梁(2)与基片一体连接,即质量块(1)右边通过梁L1和梁L2与基片边框连接、其上边通过梁L3和梁L4与基片边框连接、其左边通过梁L5和梁L6与基片边框连接、其下边通过梁L7和梁L8与基片边框连接;则,梁与梁之间、质量块边缘与基片之间、梁与基片之间均留有抗过载间隙(6)。本发明通过限制质量块的移动位移实现了三轴加速度传感器在笛卡尔坐标系中X、Y和Z三个方向的抗过载。
-
公开(公告)号:CN106865483A
公开(公告)日:2017-06-20
申请号:CN201710009234.6
申请日:2017-01-06
Applicant: 中北大学
CPC classification number: B81B3/0021 , B06B1/02 , B81C1/00158 , G01S7/521
Abstract: 本发明公开了一种医用微电容超声换能器面阵探头,包括硅衬底(1),所述硅衬底(1)的上表面为氧化层(2),所述氧化层(2)的上表面开设有若干空腔(3),若干空腔(3)成排、列布置,所述氧化层(2)的上表面键合振动薄膜(4),所述振动薄膜(4)的上表面设隔离层(5),围绕隔离层(5)的四周边缘处及其内部开设有下沉的隔离槽(6),所述隔离槽(6)贯穿隔离层(5)和振动薄膜(4)后,其槽底开设于氧化层(2)上;所述隔离层(5)的上表面上正对每个空腔(3)的中心位置处设有上电极(7)。本发明设计合理,该医用微电容超声换能器面阵探头具有结构新颖、重量轻、体积小,具有可控性高、灵敏度大、杂散电容小等优点。
-
公开(公告)号:CN106218838A
公开(公告)日:2016-12-14
申请号:CN201610573834.0
申请日:2016-07-21
Applicant: 中北大学
Abstract: 本发明涉及海洋湍流观测技术,具体是一种基于MEMS技术的全海深湍流混合矩阵型剖面观测系统。本发明解决了现有海洋湍流观测技术无法实现全海深同步多采样点立体观测的问题。基于MEMS技术的全海深湍流混合矩阵型剖面观测系统,包括母弹观测系统和子弹观测系统;所述母弹观测系统包括母弹壳体、母弹整流罩、提拉锁、姿态稳定束、通信模块、母弹传感模块、母弹运行监测模块、母弹数据存储模块、母弹微控单元、母弹电池、母弹电磁抛载机构、母弹配重、水深监测模块、机械臂;所述子弹观测系统包括子弹壳体、子弹整流罩、导航定位模块、子弹传感模块、子弹运行监测模块、子弹数据存储模块、子弹微控单元、子弹电池。本发明适用于海洋湍流观测。
-
公开(公告)号:CN105550433A
公开(公告)日:2016-05-04
申请号:CN201510915560.4
申请日:2015-12-10
Applicant: 中北大学
IPC: G06F17/50
CPC classification number: G06F17/5036
Abstract: 一种电容式微机械超声传感器特性分析方法,目的是对不同发射信号情况下位移、加速度、声压特性和接收特性进行有效分析;本发明先建立处于发射状态时CMUT微元状态方程-SIMULINK模型和处于接收状态时CMUT微元状态方程-SIMULINK模型;处于发射状态时CMUT微元状态方程-SIMULINK模型包括线性模块和非线性模块两部分;处于接收状态时CMUT微元态方程-SIMULINK模型包括线性模块、非线性模块和电流输出模块三部分;非线性模块通过确定驱动电压V、上下电极之间的初始距离g0和位移等参数计算出静电力Fe;线性模块通过确定静电力Fe、等效质量M、等效弹性系数K和等效阻力系数R等参数建立集中参数系统,计算出振动位移和速度,并把位移作为反馈量输出给非线性模块,从而将振动速度与辐射阻相乘计算出辐射声压。
-
公开(公告)号:CN103616531B
公开(公告)日:2015-11-18
申请号:CN201310669325.4
申请日:2013-12-11
Applicant: 中北大学
Abstract: 本发明为一种基于双路循环电桥检测的三轴压阻式加速度传感器,该传感器的该检测法打破了普通三轴压阻式加速度传感器至少使用12个压敏电阻,每4个连接成一个惠斯通电桥检测一个方向输出信号的“单向检测”规律,提出了一种对三轴加速度传感器三个方向的输出信号进行实时检测的循环检测电桥法,该循环检测电桥由8个压敏电阻共用桥臂而组成。对比本发明传感器的双路循环电桥检测法和普通传感器的单向检测法可以得出,采用双路循环电桥检测法有效地提高了三轴加速度传感器的灵敏度,同时降低了它的横向耦合。
-
公开(公告)号:CN102768291B
公开(公告)日:2014-06-25
申请号:CN201210252958.0
申请日:2012-07-21
Applicant: 中北大学
Abstract: 本发明涉及MEMS传感器领域中的加速度传感器,具体是一种压阻式单片集成四梁三轴加速度计,解决了现有压阻式三轴加速度计存在结构复杂,灵敏度低,轴间耦合大的问题。该加速度计包括四根弹性悬臂梁、质量块和支撑边框,质量块四个边分别通过一根弹性悬臂梁支悬于支撑边框的中心位置,支撑边框下表面通过静电键合技术与玻璃基板键合,十六个阻值相等的压敏电阻对称均布在四根弹性悬臂梁的两端,十六个压敏电阻连接分别构成三个惠斯通电桥分别检测三个轴向的加速度信号。本发明加速度计结构简单、灵敏度高、轴间耦合低、可靠性高、成本低廉、易于一体化加工,以其生产加工的加速度计应用范围广阔。
-
公开(公告)号:CN103616531A
公开(公告)日:2014-03-05
申请号:CN201310669325.4
申请日:2013-12-11
Applicant: 中北大学
Abstract: 本发明为一种基于双路循环电桥检测的三轴压阻式加速度传感器,该传感器的该检测法打破了普通三轴压阻式加速度传感器至少使用12个压敏电阻,每4个连接成一个惠斯通电桥检测一个方向输出信号的“单向检测”规律,提出了一种对三轴加速度传感器三个方向的输出信号进行实时检测的循环检测电桥法,该循环检测电桥由8个压敏电阻共用桥臂而组成。对比本发明传感器的双路循环电桥检测法和普通传感器的单向检测法可以得出,采用双路循环电桥检测法有效地提高了三轴加速度传感器的灵敏度,同时降低了它的横向耦合。
-
公开(公告)号:CN102539824B
公开(公告)日:2013-06-26
申请号:CN201110433663.9
申请日:2011-12-22
Applicant: 中北大学
Abstract: 本发明为一种微纳测风矢量传感器,解决了现有测风仪器存在检测不准、维护不便等缺点。本发明包括上盖、中间支撑体和底座,上盖的底面上设有条形卡棱,条形卡棱与中间支撑体上表面形成风道;中间支撑体内部设有内部支撑体,内部支撑体顶部安置二维敏感转换微结构,二维敏感转换微结构的微型柱状体穿过中间支撑体上表面后置于条形卡棱所形成的风道中,底座内设有与二维敏感转换微结构连接的PCB电路板。检测时,当风进入风道后,二维敏感转换微结构就可以检测到从风道进来的风。本发明开创性的采用二维敏感转换微结构对风进行测量,可实现对风速和风压的同步测量,检测灵敏度和准度都得到了较大的提高,而且还能准确的测出风的瞬时变化值。
-
公开(公告)号:CN102435776B
公开(公告)日:2013-05-01
申请号:CN201110319018.4
申请日:2011-10-20
Applicant: 中北大学
Abstract: 本发明涉及MEMS传感器领域中的加速度传感器,具体是一种单片集成八梁臂三轴加速度计,解决了现有加速度计灵敏度低、轴间耦合度大、封装结构复杂、安装测试不方便、耐高温性差的问题。该加速度计包括八根弹性梁臂、中心固支块和质量块边框,四周质量块边框分别通过弹性梁臂与中心固支块固定,中心固支块下底面通过静电耦合技术与玻璃底盖键合,十二个阻值相等的压敏电阻对称分布在八根弹性梁臂的两端,压敏电阻连接分别构成三个惠斯通电桥分别测试三个轴向的加速度。本发明加速度计灵敏度高,封装结构简单,可靠性高,成本低廉,易于一体化加工,以其生产加工的加速度计应用范围广阔。
-
公开(公告)号:CN102095489B
公开(公告)日:2012-08-08
申请号:CN201010582248.5
申请日:2010-12-10
Applicant: 中北大学
Abstract: 本发明涉及MEMS传感器领域中的矢量水听器,具体是一种矢量水听器用抗流噪声型敏感体。解决了现有矢量水听器抗流噪声能力弱的问题,包括用于敏感水声信号的敏感结构,敏感结构由双框结构支撑固定,双框结构包含外框、内框,内框的两正对边框分别通过折叠式弹簧与外框连接固定;敏感结构悬置于内框内,敏感结构半导体框架的两正对边框分别通过折叠式弹簧与内框连接固定,敏感结构半导体框架与内框间折叠式弹簧的伸缩方向、及外框与内框间折叠式弹簧的伸缩方向呈垂直关系。结构合理、紧凑,应用了芯片级减振弹簧,使得矢量水听器抑制流噪声的能力大为增强,探测距离延长,并能一次集成加工完成,一致性好,性能更加优异,更能适应水下恶劣的环境。
-
-
-
-
-
-
-
-
-