-
公开(公告)号:CN111785526A
公开(公告)日:2020-10-16
申请号:CN202010522101.0
申请日:2020-06-10
Applicant: 桂林电子科技大学
Abstract: 本发明公开了聚吡咯包覆Ni-Co-S纳米针阵列复合材料,以乙酸镍、乙酸钴、尿素、硫脲为原料,制备NF/NiCo2S4纳米针阵列材料,再以聚吡咯为导电聚合物,通过黏结剂和固化剂,制得聚吡咯包覆Ni-Co-S纳米针阵列复合材料,其中,纳米针状结构具有壳-核结构,核结构为NiCo2S4,壳结构为聚吡咯。其制备方法包括以下步骤:1)NF/NiCo2O4纳米针阵列材料的制备;2)NF/NiCo2S4纳米针阵列材料的制备;3)聚吡咯包覆Ni-Co-S纳米针阵列复合材料的制备。作为超级电容器电极材料的应用,窗口电压为0-0.5V,在放电电流密度为1A/g时,比电容为1800-1900F/g。泡沫镍载体表面生长的纳米针阵列结构规整有序,比表面积大,利于电子的传输;采用直接滴覆的方法实现导电聚合物的包覆,有效提高电化学性能。
-
公开(公告)号:CN108760855B
公开(公告)日:2020-07-17
申请号:CN201810524155.3
申请日:2018-05-28
Applicant: 桂林电子科技大学
IPC: G01N27/327 , G01N27/30
Abstract: 本发明公开了一种石墨烯‑聚吡咯‑金纳米粒子复合材料,采用原位化学聚合和静电吸附的相结合的方法,将金纳米粒子负载与石墨烯‑聚吡咯复合材料上。其制备方法包括以下步骤:1)溶液的配置;2)溶液的混合反应制备聚吡咯‑石墨烯米复合材料;3)金纳米粒子溶液的制备;4)金纳米粒子的吸附。石墨烯‑聚吡咯‑金纳米粒子复合材料的应用,用于阻抗型大肠杆菌生物传感器修饰电极的应用,检测大肠杆菌的线性范围为1×102~1×107 CFU/mL,最低检出限为100 CFU/mL。本发明所制备的阻抗型大肠杆菌生物传感器还具有操作简单、成本低廉、使用方便、选择性高等优点,因而在食品安全和临床分析等领域中具有巨大的潜在应用价值。
-
公开(公告)号:CN107804836B
公开(公告)日:2020-06-05
申请号:CN201711081630.6
申请日:2017-11-07
Applicant: 桂林电子科技大学
IPC: C01B32/184
Abstract: 本发明公开了一种基于生物高聚物的三维石墨烯,由生物高聚物吸附了Co离子后,再进行高温碳化后,经浓硝酸洗涤后得到,其比表面积为300‑400 m2/g,所述的生物高聚物由柿子单宁和壳聚糖制备的固化柿子单宁,采用Co离子作为催化剂,一步碳化法制备。其制备方法包括以下步骤:1)固化柿子单宁粉末的制备;2)前驱体的制备;3)三维石墨烯的制备。本发明采用一步碳化法,工艺简单,产品性能稳定,适合大批量的制备,而且后处理工艺简单,在碳功能材料领域具有广阔的应用前景。
-
公开(公告)号:CN110931271A
公开(公告)日:2020-03-27
申请号:CN201911346431.2
申请日:2019-12-24
Applicant: 桂林电子科技大学
Abstract: 本发明涉及一种疏水性席夫碱钴@β环糊精-石墨烯多孔碳复合材料的制备及应用。该方法采用均相反应釜、醇热法合成了疏水性5-氯水杨醛缩二氰二胺席夫碱钴金属配合物,然后与疏水性β环糊精形成包合物,并与氧化石墨烯稳定交联,最后经过过滤、洗涤、干燥以及高温煅烧等处理制得。该材料具有以下优点:5-氯水杨醛缩二氰二胺席夫碱钴金属配合物具有疏水性结构,为内部疏水外部亲水结构的β环糊精成功包埋提供了反应基础条件;采用溶剂热法和碳化法,工艺简单,环境友好;水/醇介质体系增强了材料的分散性。作为超级电容器电极材料的应用,在0-0.4V范围内充放电,在放电电流密度为1A/g时,比电容可以达到500-1000F/g,且具有优异的电化学特性和化学稳定性。
-
公开(公告)号:CN108982624B
公开(公告)日:2020-03-24
申请号:CN201810524154.9
申请日:2018-05-28
Applicant: 桂林电子科技大学
IPC: G01N27/327 , G01N33/569
Abstract: 本发明公开了一种聚吡咯@二茂铁/金纳米粒子复合材料,采用原位聚合的方法将二茂铁包覆在聚吡咯纳米球内,然后采用静电吸附的方法在聚吡咯‑二茂铁复合材料的表面吸附金纳米粒子。其制备方法包括以下步骤:1)聚吡咯@二茂铁复合材料的制备;2)金纳米粒子溶液的制备;3)聚吡咯@二茂铁/金纳米粒子复合材料的制备。用于阻抗型大肠杆菌生物传感器修饰电极的应用,检测大肠杆菌的线性范围为1×102~1×107 CFU/mL,最低检出限为100 CFU/mL。本发明还具有操作简单、成本低廉、使用方便、灵敏度高等优点,因而在食品安全和临床分析等领域中具有巨大的潜在应用价值。
-
公开(公告)号:CN110880425A
公开(公告)日:2020-03-13
申请号:CN201911162052.8
申请日:2019-11-25
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种形貌稳定可控的核壳纳米针状复合材料,其微观结构为密集排列的纳米针结构负载在泡沫镍上,纳米针结构为壳核结构,壳核结构中,核的成分为CuCo2S4,壳的成分为CoMoO4,以Co(NO3)2·6H2O、Cu(NO3)2·3H2O、CO(NH2)2、Na2MoO4·2H2O和可溶性硫化物为起始原料,经水热反应和煅烧制得。其制备方法包括以下步骤:1)被修饰的泡沫镍的制备;2)CuCo2S4@泡沫镍的制备;3)CuCo2S4@CoMoO4@泡沫镍的制备;4)CuCo2S4@CoMoO4@泡沫镍的煅烧。作为超级电容器电极材料的应用,在0-0.4V范围内充放电,在放电电流密度为0.5A/g时,比电容为2000-2100F/g。本发明的优点包括:1、引入Cu有效控制材料形貌;2、通过控制硫化时间控制材料形貌;3、通过泡沫镍基体实现了紧密排列的核壳纳米针结构,大幅提高了材料的比电容量和循环稳定性。
-
公开(公告)号:CN110828193A
公开(公告)日:2020-02-21
申请号:CN201911212683.6
申请日:2019-12-02
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种纳米花状Ni-MOF材料,原料为乙酸镍,对苯二甲酸,十二烷基硫酸钠(SDS)和溶剂DMF、去离子水、无水乙醇,通过溶剂热法原位生长制得;所得纳米花状Ni-MOF材料具有纳米花结构,纳米花结构的直径为5-20微米。其制备方法包括以下步骤:步骤1)原料的准备;步骤2)溶剂热法制备Ni-MOF材料。作为超级电容器电极材料的应用,在0-0.5 V范围内充放电,在放电电流密度为1 A/g时,比电容为802-990 F/g。具有合成所需设备具有易操作,低成本,性能稳定,低危险性等优点,该合成方法适合工业化,在超级电容器领域具有广阔的应用前景。
-
公开(公告)号:CN110491684A
公开(公告)日:2019-11-22
申请号:CN201910880354.2
申请日:2019-09-18
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种针状花钴镍双金属氢氧化物复合材料及其制备方法和应用,制备方法为:以苝-3,4,9,10-四羧酸二酐煅烧获得海绵状碳作为基体材料,加入硝酸钴、硝酸镍和尿素,经水热反应得到钴镍双金属氢氧化物,并经原位反应负载于基体碳材料表面,最终得到复合材料。材料作为超级电容器电极材料的应用,在6M KOH溶液下,在0-0.45V的窗口电压范围内进行充放电,在放电电流密度为1A/g时,比电容可以达到600-750F/g。本发明以海绵状碳作为基体材料,提高了材料的导电性和稳定性;针状花钴镍双金属氢氧化物负载于基体材料表面,提高了材料的电性能,具有制备工艺简单,原材料廉价,适于量产;电化学性能良好,可用于超级电容器的电极材料。
-
公开(公告)号:CN110415991A
公开(公告)日:2019-11-05
申请号:CN201910730891.9
申请日:2019-08-08
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种基于珊瑚状钴镍氧化物/氧化石墨烯复合材料,由氧化石墨烯与硝酸钴、硝酸镍、尿素进行溶剂热反应制得氧镍钴负载的氧化石墨烯前驱体材料,再进行低温煅烧制得,其中,所得材料呈珊瑚状,钴元素以Co3O4,镍元素以NiO形式均匀地负载在氧化石墨烯表面。其制备方法包括以下步骤:1)溶剂热法制备镍钴负载的氧化石墨烯前驱体复合材料;2)珊瑚状钴镍氧化物/氧化石墨烯复合材料的制备。作为超级电容器电极材料的应用,在-0.2-0.4V范围内充放电,在放电电流密度为1 A/g时,比电容为800-900 F/g。本发明通过氧化石墨烯诱导钴和Co3O4和NiO的自组装生长,获得珊瑚状微观形貌;实现两种金属之间的协同作用,大幅提高材料的比电容。
-
公开(公告)号:CN107546039B
公开(公告)日:2019-06-04
申请号:CN201710686777.1
申请日:2017-08-11
Applicant: 桂林电子科技大学
CPC classification number: Y02E60/13
Abstract: 本发明公开了一种锶掺杂含氮多孔碳材料,由葡萄糖、氨基脲、含锶无机盐和还原剂,经水热反应和处理后,加入碱性无机物溶液煅烧活化和处理后制得,其比表面积范围在2000~2485 m2 g‑1,平均孔径分布在1.178‑1.232 nm,且微孔含量超过92%。制备步骤包括:1)含锶前驱体的制备;2)含锶前驱体的活化;3)含锶前驱体的后处理。本发明材料作为超级电容器电极材料,在电流密度为0.5 A g‑1时,比电容值范围在319~424 F g‑1,具有良好的循环稳定性。本发明中锶的掺杂量大幅减少,同时提高了材料的比表面积,调控了孔径分布,有利于电子传输和电解液输运,并且提供赝电容;制备工艺简单,有利于实现批量生产,在超级电容器、燃料电池等领域具有良好的应用前景。
-
-
-
-
-
-
-
-
-