一种运动补偿平台底座倾覆力检测装置

    公开(公告)号:CN109374170B

    公开(公告)日:2021-04-20

    申请号:CN201811236984.8

    申请日:2018-10-23

    Abstract: 本发明属于海上作业领域,具体涉及一种运动补偿平台底座倾覆力检测装置。该装置由回转平台底座,压力传感器,杠杆机构,圆环状活动板,滚轮机构组成,可用于主动式运动补偿过桥系统或海洋起重机的回转平台底座的压力检测。滚轮机构通过一圆环状活动板,将上平台负载的重力及弯矩传导至主动式运动补偿的回转平台底座,杠杆机构的一端顶在圆环状活动板上,另一端顶在压力传感器上,可以检测到运动补偿回转平台底座的压力,避免实际工作中发生倾覆的危险,提高系统的安全性。本发明对称分布在主动式运动补偿的回转平台底座上。实际系统中使用时,为了使得测量的压力和扭矩更加精确可靠,可以安装多个。

    一种基于横摇预报的减摇鳍低航速减摇控制方法

    公开(公告)号:CN112061328A

    公开(公告)日:2020-12-11

    申请号:CN202010973647.8

    申请日:2020-09-16

    Abstract: 本发明提供一种基于横摇预报的减摇鳍低航速减摇控制方法,统计前4个半周期的最大横摇角φm(k‑j),角加速度和半周期值T(k‑j),(j=0,1,2,3)。据此,预测下半个周期的横摇幅值 和半周期根据下半个周期的横摇幅值φm(k+1)和半周期T(k+1)。重构下半个周期的横摇时间序列。并根据横摇时间序列估计海浪扰动力矩 采用反演控制计算鳍上产生的控制力矩 并最小 即,使半个周期内是控制力矩在幅值和相位上尽量接近扰动力矩,按照伺服系统的更新周期,输出第4部计算的鳍角序列。本发明预测下半个周期的幅值和周期,减小了计算量,便于工程应用。同时保证了预测精度,将鳍角运动参数化为半周期内的运动时刻和幅值,方便于非线性优化算法计算鳍角控制序列。

    一种有超压保护功能的大流量恒流量阀

    公开(公告)号:CN103939650A

    公开(公告)日:2014-07-23

    申请号:CN201410108337.4

    申请日:2014-03-22

    CPC classification number: F16K17/30 F16K27/0254

    Abstract: 本发明涉及一种有超压保护功能的大流量恒流量阀,入口与腔室的进口之间设有弹簧活塞,弹簧活塞可控制入口的通断,出口和腔室的出口之间设有弹簧活塞,弹簧活塞可控制出口的通断;腔室内由设有水平设置的开口挡板、水平设置的薄膜、竖向设置的阀芯,开口挡板的中部与阀芯的顶部固定,薄膜位于开口挡板的下方,薄膜中部与阀芯固定,薄膜中部开有环形通孔;阀芯的底部接弹簧支架,弹簧支架下方设有弹簧,阀芯的上部呈倒锥台形曲面,该倒锥台形曲面位于薄膜的下方,该倒锥台形曲面与腔室内壁之间形成可实现流量控制的阀口。

    鳍轴动密封结构
    24.
    发明公开

    公开(公告)号:CN102913627A

    公开(公告)日:2013-02-06

    申请号:CN201210392902.5

    申请日:2012-10-17

    Abstract: 本发明的目的在于提供鳍轴动密封结构,包括鳍座、箱体、压盖、填料盒、轴套,轴套套在鳍轴上,箱体固定在鳍座上,箱体与鳍轴之间安装轴承,箱体和轴套之间依次安装填料盒、压盖,压盖与轴套之间设置用于添加润滑脂的缝隙,从而构成迷宫密封,箱体上设置油脂注入口,箱体和鳍座上均设置导槽,导槽连通压盖与轴套之间的缝隙,油脂注入口通过管道连通导槽。本发明解决了船舶或水下潜器的舵、鳍等操纵面传动机构的长期动密封问题,即使有些许的海水渗入,也会通过导槽排出,确保了动密封的有效性。

    一种基于完整Weis-Fogh结构的全航速减摇鳍及其操纵方法

    公开(公告)号:CN113879476B

    公开(公告)日:2022-11-15

    申请号:CN202111298303.2

    申请日:2021-11-04

    Abstract: 本发明提供一种基于完整Weis‑Fogh结构的全航速减摇鳍,其特征是:包括船体,所述船体上安装有摇臂,摇臂与开闭油缸连接,摇臂上安装有十字轴体,十字轴体前端安装有鳍叶,十字轴体后段安装有马达。充分利用Weis‑Fogh结构在零低航速下的高升力特性,实现了基于Weis‑Fogh结构的全航速减摇鳍,这种减摇鳍利用船体和一个鳍叶实现了完整的Weis‑Fogh结构,同时非常方便进行零低和中高航速工作模式的转换。

    一种蝙蝠式T型增升水翼装置

    公开(公告)号:CN109436183B

    公开(公告)日:2020-11-03

    申请号:CN201811236985.2

    申请日:2018-10-23

    Abstract: 本发明涉及船舶制造以及船舶控制装置仿生翼型变形领域,具体涉及一种蝙蝠式T型增升水翼装置。本发明包括水翼立柱部分和蝙蝠式水平主翼部分,其中,水翼立柱部分上端安装于船艏底部,水翼立柱部分下端与蝙蝠式水平主翼部分垂直固定连接;蝙蝠式水平主翼部分位于水翼立柱部分正下方,蝙蝠式水平主翼部分采用蝙蝠式仿生翼型;本发明可增升水翼的结构特性,保证船舶在恶劣海况下高速航行时,其主翼面产生的有效升力,增强稳定船舶纵向运动的稳定力和力矩,控制船舶的纵向运动姿态,改善船上人员及设备的舒适安全性。

    一种船舶动力定位推力分配方法

    公开(公告)号:CN111061285A

    公开(公告)日:2020-04-24

    申请号:CN201911274558.8

    申请日:2019-12-12

    Abstract: 本发明属于船舶动力定位推力分配的优化问题,具体涉及一种船舶动力定位推力分配方法。本发明可以根据动力定位控制系统计算的横荡、纵荡、艏摇三个自由度上的力或力矩,利用群体智能相关优化算法,可以寻找全局最优解,在考虑能量最优、误差最小、机械结构等约束下,计算出多个吊舱推进器/全回转推进器中各个推进器需要提供的推力与转角,进而实现推力和力矩的分配,实现最小功率分配。

    一种基于单目视觉的无人机自主降落系统及方法

    公开(公告)号:CN110968112A

    公开(公告)日:2020-04-07

    申请号:CN201911288889.7

    申请日:2019-12-12

    Abstract: 本发明属于无人机控制系统和方法领域,具体涉及一种基于单目视觉的无人机自主降落系统及方法。本专利利用无人机机体下方位置挂载的单目摄像头及其重力特性,捕捉无人机下方的地面环境图像,并采用OpenCV计算机视觉库实现图像特征的辨识,获取图像特征,然后通过设计的最大内接正方形搜索算法进行安全降落区域的搜索,并实时、连续地向无人机控制器输出优先降落区域的坐标,引导无人机向目标区域降落。该方法具有较强的环境适应性,提高系统的实时性和节省电力,满足无人机对续航能力的要求。本专利可实现了无人机自主降落系统较为全面的性能提升,在很大程度上提升了系统的适用性、实用性和实时性,具有很高的工程应用价值。

Patent Agency Ranking