-
公开(公告)号:CN105132191B
公开(公告)日:2018-12-11
申请号:CN201510560303.3
申请日:2015-09-06
Applicant: 哈尔滨工业大学
CPC classification number: Y02E50/13
Abstract: 一种用固体酸催化法制备生物柴油的方法,涉及一种制备生物柴油的方法。本发明的目的是为了解决目前没有杂多酸催化生物柴油基本工艺参数的技术问题。本发明:将真空干燥后的杂多酸加入到装有豆油中,加入甲醇,架上回流冷凝管,在回流冷凝管末端套上气球,在油浴中磁力搅拌,冷却至室温,用旋转蒸发仪蒸发,转移至梨形分液漏斗中,加入饱和食盐水,震荡、静置分层,将上层倒入平底烧瓶中;用乙酸乙酯对分出的下层萃取,将萃取液均倒入装有上层中,用饱和食盐水洗涤,静置分层,分出下层,得到上层的有机相,向有机相中加入无水硫酸钠干燥2h,用旋转蒸发仪蒸发滤液得到生物柴油。本发明的方法制备的生物柴油符合生物柴油的国家标准。
-
公开(公告)号:CN118546371A
公开(公告)日:2024-08-27
申请号:CN202410559852.8
申请日:2024-05-08
Applicant: 哈尔滨工业大学
IPC: C08G77/14 , C08G77/06 , C08G77/20 , C08G77/34 , C04B35/515 , C04B35/622
Abstract: 一种SiBOC陶瓷的光固化前驱体的制备方法及3D打印SiBOC陶瓷的方法,它涉及SiBOC陶瓷的制备方法,它是要解决现有的SiBOC陶瓷前驱体合成方法复杂、制造成本高和打印成品率低的技术问题。前驱体制法:以3‑(三甲氧基甲硅基)甲基丙烯酸丙酯、二官能团度硅氧烷、小分子硅氧烷混合物、硼源、催化剂和溶剂混合均匀后加热反应,得到SiBOC树脂混合液,再去除溶剂和残留硼源,得到前驱体。SiBOC陶瓷制法:将前驱体、活性单体稀释剂、光引发剂、光吸收剂、阻聚剂并搅拌溶解,得到光敏树脂;利用光敏树脂进行3D打印后,在管式炉中陶瓷化,得到陶瓷部件。成品率达到90%~100%,成本低,可用于SiBOC陶瓷领域。
-
公开(公告)号:CN116969820A
公开(公告)日:2023-10-31
申请号:CN202311015130.8
申请日:2023-08-14
Applicant: 哈尔滨工业大学
IPC: C07C45/00 , C07C45/81 , C07C45/79 , C07C45/78 , C07C49/235
Abstract: 可见光诱导的1,4‑烯炔化合物分子内炔基迁移并实现未活化烯烃双官能团化的方法,它涉及烯烃炔基迁移的方法,它是要解决现有的直接选择性官能团化的方法催化剂昂贵、反应条件苛刻和区域选择性较差的技术问题。本发明的方法:将1,4‑烯炔化合物、三氟甲基源、光催化剂、碱和溶剂加入到透明反应器中,在氮气气氛下用蓝色LEDs灯光照反应,再纯化,得到烯炔分子内炔基迁移并实现未活化烯烃双官能团化的产物;该产物的结构式为:#imgabs0#其中R为氢或者烷基。本方法通过分子内的迁移策略实现烯烃的双官能团化,构建炔酮结构和引入三氟甲基基团,可以用于药物先导化合物的筛选或供生物活性测试,也可用于有机方法学机理研究领域。
-
公开(公告)号:CN115059559A
公开(公告)日:2022-09-16
申请号:CN202210881818.3
申请日:2022-07-26
Applicant: 哈尔滨工业大学 , 上海新力动力设备研究所
IPC: F02K9/86
Abstract: 一种可精准调控固体火箭发动机推力的阀门,本发明为了解决现有可变推力固体火箭发动机是通过针栓的轴向移动调节燃烧室内的压力大小,针栓调节的动力使燃烧室产生波的作用,很难实现精确调节的问题。本发明的两组拉杆(7)平行设置,两组拉杆(7)之间通过铜制弹簧(5)连接,两组拉杆(7)均与下滑道(3)滑动连接,所述拉伸铜丝(6)的一端与拉杆(7)连接,拉伸铜丝(6)的另一端缠绕在电机(4)的输出轴上,电机(4)固定在支撑板(8)上,下滑道(3)和支撑板(8)均固定在底座(9)上,一组拉杆(7)的上端与左侧开合门(2)连接,另一组拉杆(7)的上端与右侧开合门(2)连接,开合门(2)的上端与上滑道(1)滑动连接。本发明采用可远程控制程序操控电机,通过电机控制拉伸铜丝进而实现阀门的开合以实现精准控制。
-
公开(公告)号:CN113800515A
公开(公告)日:2021-12-17
申请号:CN202111271922.2
申请日:2021-10-29
Applicant: 哈尔滨工业大学
IPC: C01B32/324 , C01B32/342 , C01G53/04 , H01G11/34 , H01G11/30 , H01G11/24 , B82Y30/00 , B82Y40/00
Abstract: 掺氮活性炭及多元氢氧化物/生物质多孔碳纳米复合电极材料的制备方法,它涉及活性碳、多孔碳纳米复合电极材料的制法。它是要解决现有的多孔生物质炭材料比表面积小的技术问题。掺氮活性炭是利用玉米芯与NH4HCO3高温炭化后得到的;多元氢氧化物/生物质多孔碳纳米复合电极材料的制法:将NiSO4.6H2O、Co(NO3)2.6H2O、AlCl3.6H2O及掺氮活性炭溶于水中制备前驱液;将前驱液和氨水转移到高压釜中水热合成,得到电极材料。本掺氮活性炭的比表面积达到800m2g‑1~900m2g‑1。多元氢氧化物/生物质多孔碳纳米复合电极材料的比电容达240~1836.7F.g‑1,可用于电极材料领域。
-
公开(公告)号:CN105132191A
公开(公告)日:2015-12-09
申请号:CN201510560303.3
申请日:2015-09-06
Applicant: 哈尔滨工业大学
CPC classification number: Y02E50/13
Abstract: 一种用固体酸催化法制备生物柴油的方法,涉及一种制备生物柴油的方法。本发明的目的是为了解决目前没有杂多酸催化生物柴油基本工艺参数的技术问题。本发明:将真空干燥后的杂多酸加入到装有豆油中,加入甲醇,架上回流冷凝管,在回流冷凝管末端套上气球,在油浴中磁力搅拌,冷却至室温,用旋转蒸发仪蒸发,转移至梨形分液漏斗中,加入饱和食盐水,震荡、静置分层,将上层倒入平底烧瓶中;用乙酸乙酯对分出的下层萃取,将萃取液均倒入装有上层中,用饱和食盐水洗涤,静置分层,分出下层,得到上层的有机相,向有机相中加入无水硫酸钠干燥2h,用旋转蒸发仪蒸发滤液得到生物柴油。本发明的方法制备的生物柴油符合生物柴油的国家标准。
-
公开(公告)号:CN114889122B
公开(公告)日:2024-11-05
申请号:CN202210354050.4
申请日:2022-04-06
Applicant: 哈尔滨工业大学
IPC: B29C64/20 , B29C64/336 , B33Y30/00 , B33Y40/00
Abstract: 一种基于微液滴发生器阵列的3D打印装置,为了解决现有技术打印大幅面的工件,需要庞大的打印机及打印时间长的问题。本发明的激光器、安装板和打印平台由上至下水平设置,激光器安装在安装臂的底部,安装臂与立柱固定连接,安装板安装在转动机构的底部,转动机构与立柱铰接,立柱与工作箱体固定连接,打印平台安装在升降机构的升降杆上,升降机构安装在工作箱体的内部,微液滴发生器位于安装板与打印平台之间,安装板内部设置有输液孔,微液滴发生器通过输料管与输液孔连通,输液管的一端与输液孔连通,输液管的另一端与缓冲瓶连通,缓冲瓶通过管路与原料箱连通。本发明可同时打印多种材料组成的物体,多个打印头同时工作可大大缩短打印时间。
-
公开(公告)号:CN113845107B
公开(公告)日:2024-03-15
申请号:CN202111271924.1
申请日:2021-10-29
Applicant: 哈尔滨工业大学
Abstract: 利用二维共价有机骨架热解制备多孔碳纳米片的方法,本发明涉及多孔碳纳米片的方法。本发明是要解决现有的用COF制备的多孔碳材料比电容低的技术问题。本发明的方法:利用醛类反应物与胺类反应物在氮气保护下反应,得到聚合物;再将聚合物放入管式炉中,在氮气气氛下加热,得到多孔碳纳米片。本发明的多孔碳纳米片的比表面积达到300.847m2g‑1~1496.588m2g‑1,孔径为3.132nm~3.713nm。利用该多孔碳纳米片制备的电极的比电容为500‑630F g‑1,阻抗为0.8~2.7Ω,可用于电化学领域。
-
公开(公告)号:CN111676699B
公开(公告)日:2022-11-22
申请号:CN202010729085.2
申请日:2020-07-27
Applicant: 哈尔滨工业大学
IPC: D06M15/59 , D06M11/74 , C08J5/06 , C08J5/08 , C08L101/00 , C08L77/10 , C08K9/04 , C08K9/02 , C08K7/14 , C08K7/06 , C03C25/47 , C03C25/328 , C03C25/42 , D06M101/40 , D06M101/36
Abstract: 一种MXene/聚酰胺酰亚胺复合上浆剂及其制备方法和应用,它涉及纤维上浆剂及其制备方法和应用。它是要解决现有的纤维上浆剂对复合材料的力学性能差的技术问题。本发明的上浆剂是由Ti3C2Tx MXene分散液、分散剂溶液和聚酰胺酰亚胺溶液混合而成。制法:将Ti3C2Tx MXene分散液、分散剂溶液和聚酰胺酰亚胺溶液混合即可。可将上浆剂作为热塑性复合材料增强纤维的处理剂,制备纤维增强热塑性复合材料的方法:将纤维脱浆、氧化后用MXene/聚酰胺酰亚胺复合上浆剂浸渍,然后分散到热塑性树脂中,成型,得到的复合材料的层间剪切强度达到55MPa~85MPa。可用于航空航天、汽车或工程等领域。
-
公开(公告)号:CN110845404B
公开(公告)日:2022-03-04
申请号:CN201911233058.X
申请日:2019-12-05
Applicant: 哈尔滨工业大学
IPC: C07D213/89
Abstract: 一种2‑苯基取代吡啶氮氧化合物的制备方法,它涉及一种吡啶氮氧衍生物的制备方法,它是要解决现有的直接选择性官能团化的方法的催化剂易燃、易爆、反应条件苛刻和区域选择性较差的技术问题。本方法:在室温下将吡啶氮氧衍生物、二苯基碘四氟硼酸盐、曙红Y催化剂、碱和添加剂加入到透明反应器中,密封;然后用氮气置换反应器中的气体形成氮气气氛,再注入溶剂,混合均匀;将反应器用蓝色LEDs灯光照进行反应;在反应结束后,旋蒸除去溶剂,再经预制硅胶柱层析分离纯化,得到2‑苯基取代吡啶氮氧化合物,该化合物的结构式为:其中R1为氢、烷基、腈基、卤素、苯基或硝基;它可以用于药物先导化合物的筛选或供生物活性测试、研究领域。
-
-
-
-
-
-
-
-
-