-
公开(公告)号:CN114163138B
公开(公告)日:2023-03-03
申请号:CN202111536521.5
申请日:2021-12-16
Applicant: 南京工程学院
IPC: C03C17/245 , C09K11/02 , C09K11/78 , H01L31/0236 , H01L31/055
Abstract: 本发明公开了一种光谱转换纳米棒阵列的制备方法,包括以下步骤:步骤一,将基体清洗干净后,在基体上生长籽晶层;步骤二,将生长有籽晶层的基体置入六次甲基四铵、草酸、硝酸钠、硝酸锌和油酸钠的混合水溶液中,室温下静置2~5h,获得活化籽晶层;步骤三,配制硝酸锌、硝酸铽和硝酸镱水溶液,加入油酸与乙醇混合溶液,搅拌均匀倒入反应釜,反应釜中放置沉积有活化籽晶层的基体,120~130℃反应0.3~4h,生长纳米棒阵列后的基体清洗并烘干。本发明能够起到光转换和减反射双重作用。将稀土元素掺入氧化锌籽晶层,生长过程中加入油酸控制稀土氧化物的结晶取向,使稀土氧化物顺利掺入氧化锌纳米棒中。
-
公开(公告)号:CN114381723B
公开(公告)日:2022-12-20
申请号:CN202210030542.8
申请日:2022-01-12
Applicant: 南京工程学院
Abstract: 本发明公开了一种钢铁工件表面耐蚀层,包括在钢铁工件表面自反应形成的Mo扩散层和MoFe2金属化合物层;内层为所述Mo扩散层,外层为所述MoFe2金属化合物层。本发明还公开了一种钢铁工件表面耐蚀层的制备方法。本发明自反应形成耐蚀层,外层MoFe2化学电位较高具有致密结构,使钢铁工件最表面耐蚀性大幅提高的同时硬度和耐磨性也显著增加;内层Mo扩散层中大量Mo原子扩散进入基体中,不仅升高了整体的腐蚀电位,提高了钢铁工件耐腐蚀,还由于Mo原子的固溶强化作用,使位错运动受阻,钢铁工件中的位错运动受阻,强度上升环保无排放。同时,本发明的反应无废渣废气的排放,废液通过调整成分浓度后可以循环利用,对环境友好。
-
公开(公告)号:CN112442669B
公开(公告)日:2022-09-23
申请号:CN202011321176.9
申请日:2020-11-23
Applicant: 南京工程学院
Abstract: 本发明公开了一种自清洁减反射薄膜的制备方法,包括以下步骤:步骤一:取清洗干净的玻璃基体,置于磁控溅射装置的腔室内,采用金属靶和二氧化硅靶共溅射;步骤二:将沉积结束的玻璃基体浸入特制去金属溶液中,超声振荡0.5‑1h,进行湿法刻蚀,获得二氧化硅薄膜;步骤三:将去金属后的玻璃基体用流动水清洗干净,再浸入稀盐酸溶液中去除多余的碱液;步骤四:将中和清洗后的玻璃基体取出,并采用流动水冲洗干净,表面吹干,置于退火炉中300‑500℃退火1‑2h,使二氧化硅薄膜结晶,最终在玻璃基体上得到具有孔洞结构的二氧化硅结晶态薄膜。本发明提供的一种自清洁减反射薄膜的制备方法,能够起到自清洁和减反射双重作用。
-
公开(公告)号:CN114196883B
公开(公告)日:2022-08-16
申请号:CN202111519790.0
申请日:2021-12-14
Applicant: 南京工程学院
IPC: C22C38/02 , C22C38/04 , C22C38/44 , C22C38/42 , C22C38/46 , C22C33/04 , C21C7/00 , C21C7/068 , C21C7/076 , B22D1/00 , B82Y40/00
Abstract: 本发明公开了一种低缺陷细晶粒合金钢,以质量百分比计,其原料及配比如下:C:0.31~0.45%;Si:0.41~0.65%;Mn:0.53~0.77%;Mo:0.61~0.71%;S:≤0.005%;P:≤0.005%;Cr:1.55~2.25%;Ni:≤0.35%;Cu:≤0.30%;V:0.43~0.63%;Mg:0.22~0.32%;Fe:余量。本发明还公开了一种低缺陷细晶粒合金钢的铸造方法及其应用。本发明提供的一种低缺陷细晶粒合金钢及其铸造方法和应用,具有低铸造缺陷的特点,无明显疏松、多孔、成分偏析等铸造缺陷,晶粒度为10~12级。
-
公开(公告)号:CN114536567A
公开(公告)日:2022-05-27
申请号:CN202210092745.X
申请日:2022-01-26
Applicant: 南京工程学院
Abstract: 本发明公开了一种基于形状记忆合金的刀头可拆卸式耐磨锯片,包括锯片本体、以及锯片本体周圈上设有的镶嵌槽,所述镶嵌槽内嵌设有可拆卸刀头,所述可拆卸刀头的端部设有金刚石,所述可拆卸刀头与锯片本体通过卡子可拆卸连接,所述卡子为形状记忆合金制作而成的U型卡子。通过形状记忆合金的U型卡子将锯片本体与可拆卸刀头连接起来。在锯片出现损耗时无需复杂的操作即可实现刀头的拆卸与替换。并且,本发明还提供了一种基于形状记忆合金的刀头可拆卸式耐磨锯片的拆装方法,可拆卸刀头与锯片本体的拆装非常简单,易于操作。
-
公开(公告)号:CN113897515B
公开(公告)日:2022-04-12
申请号:CN202111122535.2
申请日:2021-09-24
Applicant: 扬州亚光电缆有限公司 , 南京工程学院
Abstract: 本发明公开了一种航空航天用耐高温抗氧化镍基合金材料,包括以下质量百分含量的元素组分:Si:13.5~15.4%;Fe:1.5~3.9%;Ti:10.3~16.7%;C:0.1~0.4%;Al:2.2~5.8%;Ni:余量。本发明还公开了一种航空航天用耐高温抗氧化镍基合金材料的制备方法及其在航空航天用镍基合金中的应用。本发明的镍基合金材料具有特殊的微观结构,即晶粒外层由超细三维网状中间相层包裹。Ti4Ni4Si7相属于高致密度组织,一方面能够有效防止氧向材料内部扩散发生氧化。另一方面,相中活性元素Ti和Si能够夺取少量扩散进去的氧,形成稳定结合的氧化物,让该材料具有非常优异的抗氧化性能。
-
公开(公告)号:CN113897515A
公开(公告)日:2022-01-07
申请号:CN202111122535.2
申请日:2021-09-24
Applicant: 扬州亚光电缆有限公司 , 南京工程学院
Abstract: 本发明公开了一种航空航天用耐高温抗氧化镍基合金材料,包括以下质量百分含量的元素组分:Si:13.5~15.4%;Fe:1.5~3.9%;Ti:10.3~16.7%;C:0.1~0.4%;Al:2.2~5.8%;Ni:余量。本发明还公开了一种航空航天用耐高温抗氧化镍基合金材料的制备方法及其在航空航天用镍基合金中的应用。本发明的镍基合金材料具有特殊的微观结构,即晶粒外层由超细三维网状中间相层包裹。Ti4Ni4Si7相属于高致密度组织,一方面能够有效防止氧向材料内部扩散发生氧化。另一方面,相中活性元素Ti和Si能够夺取少量扩散进去的氧,形成稳定结合的氧化物,让该材料具有非常优异的抗氧化性能。
-
公开(公告)号:CN111364018B
公开(公告)日:2021-10-08
申请号:CN202010134265.6
申请日:2020-03-02
Applicant: 江阴电工合金股份有限公司 , 南京工程学院
Abstract: 本发明涉及一种石墨烯铜基复合材料及其制备方法,采用表面浸蚀‑气相沉积‑超声清洗的方法制备出具有铜基体层‑过渡层‑石墨烯层复合结构的石墨烯铜复合材料,制备方法包括以下步骤:铜粉表面浸蚀;过滤、烘干并在石英舟内铺设;化学气相沉积炉的装配;化学气相沉积;超声清洗并过滤干燥。本发明的复合材料中铜基体与石墨烯之间具有优良的结合力,且石墨烯层具有完整、缺陷少、质量优的特点,所制备的复合材料抗拉强度、变形率、导电性能优异。
-
公开(公告)号:CN111261317B
公开(公告)日:2021-08-31
申请号:CN202010274988.6
申请日:2020-04-09
Applicant: 江东合金技术有限公司 , 南京工程学院 , 河海大学
Abstract: 本发明公开了一种特种电缆用高性能抗氧化铜导体材料及其制备方法,涉及电缆用的导体材料技术领域,解决了现有的特种电缆用铜导体可加工性能较低,面对高温、高氧等极端工况下无法持续保持铜导体的抗氧化性能的问题。包括如下步骤:S1放线:选取铜线置于放线盘;S2退火:对铜线进行退火处理;S3酸洗:将铜线牵引入酸洗槽进行酸洗处理;S4镀锡银:将铜线牵引入锡银炉进行镀锡银处理;S5压力加工:将铜线牵引入拉丝模,进一步拉丝处理;S6性能热处理:将铜线牵引入电感热处理隧道炉进行性能热处理;S7收线:将铜线牵引入收线盘,冷却后得到成品。达到了使该方法制备的铜线具有优异的力学性能、抗氧化性能和导电性能的效果。
-
公开(公告)号:CN112415644B
公开(公告)日:2021-06-08
申请号:CN202011329563.7
申请日:2020-11-24
Applicant: 南京工程学院
Abstract: 本发明公开了一种超轻量化C/C‑SiC空间反射镜,包括C/C复合材料、包埋于C/C复合材料表面的SiC梯度过渡层,以及设置在SiC梯度过渡层表面的石墨烯‑SiCNWs多维杂化增强CVD‑SiC涂层。本发明还公开了一种超轻量化C/C‑SiC空间反射镜的制备方法的应用。本发明在超轻C/C复合材料表面制备PC‑SiC过渡涂层,降低由于镜面CVD‑SiC涂层与C/C基体热膨胀失配产生的热应力,还通过一步CVD法在包埋SiC涂层表面生长石墨烯缠绕SiC纳米线增强体,即改善了SiCNWs与CVD‑SiC基体之间的界面结合,又借助了石墨烯优异的力学性能提高了单一SiCNWs增强CVD‑SiC光学涂层的效果。
-
-
-
-
-
-
-
-
-