基于深度学习的番茄病虫害检测装置与方法

    公开(公告)号:CN117333764A

    公开(公告)日:2024-01-02

    申请号:CN202210670550.9

    申请日:2022-06-21

    Abstract: 本发明公布了一种基于深度学习的番茄病虫害检测装置与方法。该装置主要包括:图像采集终端,用于存储与识别番茄叶片图像的服务器,客户端和预警模块。图像采集终端包括外盒,置物板,摄像头,LED光源,控制面板,电源开关,摄像开关,和数据传送模块;服务器负责利用已经训练好的深度学习神经网络识别传送过来的图像并附上检测结果标签,同时根据标签分组存储已标注的图像;客户端负责显示番茄病害种类信息;预警模块根据番茄病虫害种类信息进行病虫害预警。本检测装置与深度学习方法将深度学习应用于番茄病虫害自动识别中,无需对图像进行预处理,识别精度高,时效性强,可节约大量时间与人力成本,实现对病害植株的实时检测与及时施药,具有较好的应用前景。

Patent Agency Ranking