-
公开(公告)号:CN109507665B
公开(公告)日:2020-12-18
申请号:CN201811280751.8
申请日:2018-10-30
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90
Abstract: 本发明一种基于星载AIS实时信息引导的星上自主成像方法,步骤如下:(1)捕获并确认需观测的舰船目标;(2)确定卫星观测时刻和观测区域;(3)计算卫星对船只的观测姿态;(4)调整卫星姿态,确定SAR载荷可进行成像工作。本发明利用星载AIS信息实时对感兴趣的目标进行匹配筛选,并确定目标所在的区域,实现SAR载荷成像所需要时间、姿态、成像参数等数据的实时解算,自动生成卫星姿态调整指令及SAR载荷开机成像指令,完成对选定区域和选定目标的成像任务。AIS信息和SAR成像信息的综合利用,提高了海上舰船目标的识别确认效率,提高了舰船目标的成像准确率,提高了系统的观测效能。
-
公开(公告)号:CN110146882A
公开(公告)日:2019-08-20
申请号:CN201910267665.1
申请日:2019-04-03
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明提供一种基于星载视频SAR的运动目标检测与参数估计方法,具体过程为:首先,根据待检测目标的速度范围选择合理的帧周期对回波数据进行处理得到SAR视频图像;其次,基于SAR视频图像实现运动目标的检测,估计运动目标像的运动参数;再次,基于运动目标像的运动参数与实际运动参数之间的定量关系,实现基于视频SAR的运动目标检测与参数估计。该方法可以快速实现对运动目标的检测与参数估计。
-
公开(公告)号:CN109507665A
公开(公告)日:2019-03-22
申请号:CN201811280751.8
申请日:2018-10-30
Applicant: 北京空间飞行器总体设计部
IPC: G01S13/90
Abstract: 本发明一种基于星载AIS实时信息引导的星上自主成像方法,步骤如下:(1)捕获并确认需观测的舰船目标;(2)确定卫星观测时刻和观测区域;(3)计算卫星对船只的观测姿态;(4)调整卫星姿态,确定SAR载荷可进行成像工作。本发明利用星载AIS信息实时对感兴趣的目标进行匹配筛选,并确定目标所在的区域,实现SAR载荷成像所需要时间、姿态、成像参数等数据的实时解算,自动生成卫星姿态调整指令及SAR载荷开机成像指令,完成对选定区域和选定目标的成像任务。AIS信息和SAR成像信息的综合利用,提高了海上舰船目标的识别确认效率,提高了舰船目标的成像准确率,提高了系统的观测效能。
-
公开(公告)号:CN113254246A
公开(公告)日:2021-08-13
申请号:CN202110432136.X
申请日:2021-04-21
Applicant: 北京空间飞行器总体设计部
IPC: G06F11/07
Abstract: 一种适用于多元耦合星载参数的深度判读方法,包括:采样处理,获得卫星加断电期间供电母线的功率‑时间曲线;根据标称曲线,对功率‑时间曲线进行一级单一判读处理;将采样获得的功率‑时间曲线进行基线估计和稀疏性去噪处理,获得趋势基线B和短期变化曲线C;对短期变化曲线C进行二级深度判读处理;获得求导后曲线的变化幅值Δ’;将变化幅值Δ’与遥测分层门限m比较,判读是否存在异常。本发明首次针对易扰动性、易耦合性关键遥测数据,提出了数据解耦、多级比对的深度分析策略,解决了多触发源并发情况下的耦合数据判读、异常检测的难题,适用于复杂任务、批产组网需求下星载数据的智能化、精细化深度判读要求。
-
公开(公告)号:CN112173173A
公开(公告)日:2021-01-05
申请号:CN202010963259.1
申请日:2020-09-14
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明一种面向成像卫星的目标可见弧段确定方法,步骤如下:(1)计算得到姿态机动能力与载荷视场范围的复合可视视场角;(2)确定当前轨道位置卫星与目标间的几何可见性;(3)确定当前轨道位置卫星与目标间的载荷可见性;(4)根据轨道信息及卫星当前轨道位置高度,计算步长Δt,获取下一轨道时刻ti+1,进而获取下一个轨道时刻的位置;(5)重复步骤(2)‑(4),直至轨道点遍历结束,根据自适应抽样可见性计算结果合并生成粗粒度可见弧段区间;(6)在粗粒度可见弧段首尾处进行区间延展,形成精细可见弧段区间。
-
公开(公告)号:CN110763141A
公开(公告)日:2020-02-07
申请号:CN201910808888.4
申请日:2019-08-29
Applicant: 北京空间飞行器总体设计部
Abstract: 一种高精度的六自由度测量系统的精度验证方法及系统,适用于长距离高精度六自由度测量系统的测量精度验证。本发明针对激光测距仪和数码相机的组合六自由度测量系统,在60m大长度范围内使用高精度激光跟踪仪和靶标系统分步对激光方向和相机进行标定,建立高可靠的激光测距仪和数码相机之间测量坐标系的转换关系,进而进行高精度的六自由度测量系统测量精度验证,可同步验证亚毫米级的位移测量精度和角秒级的三轴角度测量精度,从而解决高精度长距离六自由度测量系统的精度验证迫切需求。
-
-
-
-
-