一种轮腿机器人的关节驱动装置、控制方法及轮腿机器人

    公开(公告)号:CN114313050A

    公开(公告)日:2022-04-12

    申请号:CN202111570477.X

    申请日:2021-12-21

    Abstract: 本发明涉及机器人技术领域,具体涉及一种轮腿机器人的关节驱动装置、控制方法及轮腿机器人,包括髋关节旋转执行器、膝关节旋转执行器以及电机,所述髋关节旋转执行器通过髋关节电静液执行器进行位移闭环控制伸展/收缩,所述膝关节旋转执行器通过膝关节电静液执行器进行位移闭环控制伸展/收缩,所述膝关节旋转执行器通过膝关节电静液执行器进行力闭环控制减振,所述电机通过控制器带动车轮转动/停止。目的在于以轮式模态运行为主,简单的步式模态运动为辅,且在轮式模态下能够很好的实现减振功能,在步式模态下能够很好的实现腿伸缩功能,从而兼顾轮腿机器人在实际使用过程中的灵活性和功能性。

    一种飞行器抗扰动控制方法、系统及装置

    公开(公告)号:CN112650293A

    公开(公告)日:2021-04-13

    申请号:CN202011605963.6

    申请日:2020-12-30

    Abstract: 本发明公开了一种飞行器扰动控制方法、系统及装置,所述方法包括:获取飞行器的当前加速度值;将所述当前加速度值与加速度给定值进行比较,判断比较结果是否满足预设比较条件;在所述比较结果不满足所述预设比较条件的情况下,对所述飞行器进行控制。上述的控制方法中,通过获取飞行器的当前加速度值,在当前加速度值与加速度给定值不相同的情况下,对飞行器其进行控制,由于加速度是直接对力的测量,具有周期短、频率响应快的特点,因此大大提高了系统的响应速度。

    一种轮腿机器人及其驱动方法

    公开(公告)号:CN112550513A

    公开(公告)日:2021-03-26

    申请号:CN202011430953.3

    申请日:2020-12-09

    Abstract: 本发明公开了一种轮腿机器人及其驱动方法,属于轮腿机器人技术领域,包括车体、大腿、小腿、轮和两个液压控制系统;液压控制系统包括液压缸、活塞杆和电机齿轮控制系统;液压缸内设有承载腔和非承载腔;活塞杆分隔承载腔和非承载腔;一个液压控制系统通过控制活塞杆相对液压缸的伸长量或通过电机齿轮控制系统来控制车体和大腿之间的夹角大小;另一个液压控制系统通过控制活塞杆相对液压缸的伸长量或通过电机齿轮控制系统来控制大腿和小腿之间的夹角大小。本发明的一种轮腿机器人及其驱动方法,没有溢流损耗,无节流损耗,节约系统功率,液压系统传递效率高,能量利用率高,缓冲性能好,寿命长。

    一种轮腿机器人及其驱动方法

    公开(公告)号:CN112550510A

    公开(公告)日:2021-03-26

    申请号:CN202011427765.5

    申请日:2020-12-09

    Abstract: 本发明公开了一种轮腿机器人及其驱动方法,属于轮腿机器人技术领域,包括车体、大腿、小腿、轮和两个液压控制系统;所述大腿一端和车体铰接,大腿另一端和小腿一端铰接;所述小腿另一端设有轮;所述两个液压控制系统分别控制车体和大腿之间的夹角大小、大腿和小腿之间的夹角大小;所述液压控制系统包括液压缸、活塞杆和第二高压蓄能器;所述液压缸内设有承载腔和非承载腔;所述活塞杆分隔承载腔和非承载腔;所述第二高压蓄能器通过油路连通承载腔。本发明的一种轮腿机器人及其驱动方法,没有较大的节流功率损耗,液压系统传递效率高,能量利用率高,缓冲性能好,寿命长。

    一种自适应容错控制方法、系统及空中机器人

    公开(公告)号:CN111399473A

    公开(公告)日:2020-07-10

    申请号:CN201911405132.1

    申请日:2019-12-31

    Abstract: 本发明公开了一种自适应容错控制方法、系统及空中机器人,方法包括通过频域辨识方法建立空中机器人状态空间模型;设计自适应控制器与部分执行器故障模型;设计基准控制器;设计执行器故障模型;设计自适应容错控制回路,其包括设计执行器失效因子诊断器和设计可重构控制律。另外,还公开了与方法相应的系统以及应用该方法的空中机器人。本发明提供了一种新的空中机器人解决方案,扩大了空中机器人的应用范围。本发明通过引入自适应控制方法,解决了飞行器加装机械臂后模型的未知非线性问题所带来的不便。本发明所设计的自适应容错控制器的性能有了很大的提高,控制结构对常变执行器器故障具有很强的鲁棒性。

    一种主动悬架控制方法及系统

    公开(公告)号:CN110901325B

    公开(公告)日:2024-10-18

    申请号:CN201911197599.1

    申请日:2019-11-29

    Abstract: 本发明涉及车辆悬架技术领域,公开了一种主动悬架控制方法;在车辆行驶的过程中,对前方道路进行观测获取该处道路不平度曲线,并对车辆行驶至该路面具备平顺性所应保持的自身姿态进行预估,得到车身姿态期望值;主动悬架控制器根据路面不平度曲面计算补偿信息,并结合当前车辆姿态状态,计算得到悬架姿态指令;当车辆行驶至该处不平路面时,主动悬架控制器向底盘控制器发送悬架姿态指令;底盘控制器控制各个悬架的作动机构对相对应的悬架进行独立调节,从而使车辆能够适应路面起伏变化,保持良好的整车平顺性,提高车辆乘坐舒适性。同时,本发明还公开了一种主动悬架控制系统。

    一种陆空两用多模态涵道式飞行器及其控制方法

    公开(公告)号:CN112140821B

    公开(公告)日:2024-07-26

    申请号:CN202011092299.X

    申请日:2020-10-13

    Abstract: 本发明涉及一种陆空两用多模态涵道式飞行器,包括至少三个沿第一方向并排布置的动力单元,任意相邻两个所述动力单元均通过连接机构相连,所述动力单元设置有涵道风扇,部分或全部所述连接机构为允许相邻两个所述动力单元之间的夹角产生变化的角度调节机构,以使所述动力单元能够朝向同一侧弯折并卷曲形成首尾相接的筒状结构,在陆地行走时,所述筒状结构由所述涵道风扇提供动力并在地面滚动。相比于增设陆地行走机构的方式而言,本发明中所公开的陆空两用多模态涵道式飞行器的重量和尺寸均较小,这有利于增加涵道式飞行器的续行里程并提高其通过性。本发明还公开了一种上述陆空两用多模态涵道式飞行器的控制方法。

    一种分体式飞行汽车信息架构
    29.
    发明公开

    公开(公告)号:CN117284031A

    公开(公告)日:2023-12-26

    申请号:CN202311228663.4

    申请日:2023-09-22

    Abstract: 本发明提供一种分体式飞行汽车信息架构,包括:用于根据地面指挥系统发送的指令工作并根据实时飞行状态、自身环境、能源动力调整自身飞行局部规划路径并按照需求飞行的飞行信息系统;用于根据地面指挥系统发送的指令工作并根据实时行驶状态、能源状态、各电机情况调整自身行驶局部规划路径并按照需求行驶的底盘信息系统;用于周期性检测对接情况,并根据乘客需求进行切换对接的座舱信息系统;用于发布指令的地面指挥系统。本发明所述一种分体式飞行汽车信息架构具有集成度高、实时性强、位置共享且满足分体式飞行汽车需求等特点,可广泛应用于交通领域。

    一种陆空两栖机器人
    30.
    发明公开

    公开(公告)号:CN116729660A

    公开(公告)日:2023-09-12

    申请号:CN202310898569.3

    申请日:2023-07-20

    Abstract: 本发明涉及机器人技术领域,具体涉及一种陆空两栖机器人,其包括机身组件、履带组件、涵道组件以及驱动组件,该履带组件设置在机身组件的正下方,涵道组件包括至少两组涵道组件,该涵道组件相对于机身组件具有展开状态和折叠状态,当所述涵道组件处于展开状态时,两组涵道组件分别位于所述机身组件的两侧,当所述涵道组件处于折叠状态时,两组涵道组件均向上收折并位于所述机身组件的正上方;驱动组件用于所述涵道组件在折叠状态和展开状态之间转换。该陆空两栖机器人采用了多个涵道螺旋桨的结构,其具有噪音小、安全性高、效率高的特点,并且其行走系统采用履带结构,环境适应性好,越障能力强。

Patent Agency Ranking