超近距离的高精度相对位置保持控制方法

    公开(公告)号:CN103950555A

    公开(公告)日:2014-07-30

    申请号:CN201410163218.9

    申请日:2014-04-22

    Abstract: 本发明公开一种超近距离的高精度相对位置保持控制方法,方法为了解决两个航天器超近距离停靠的相对导航和相对控制方法,采用把相对坐标系建立在追踪星的轨道系下,测量信息从测量坐标系下转换到相对坐标系下,使用了追踪器的姿态信息,追踪器采用星敏感器加陀螺的高精度定姿方法,比相对姿态的精度高,因此降低了相对测量信息的对相对导航精度的影响,因此提高了相对导航精度。从而保证了高精度的相对位置控制。由于对追踪器的姿态控制精度要求高于相对姿态的测量精度,因此不采用相对姿态控制,而采用绝对姿态控制。

    一种自主恢复轨控故障时的星敏感器定姿方法

    公开(公告)号:CN101214861A

    公开(公告)日:2008-07-09

    申请号:CN200710301591.6

    申请日:2007-12-26

    Abstract: 一种自主恢复轨控故障时的星敏感器定姿方法,包括:(1)根据陀螺测量数据预估卫星惯性姿态;(2)根据卫星惯性姿态和星敏感器测量输出的惯性坐标系下的光轴矢量和横轴矢量计算滤波修正的新息量,并计算前后两个周期新息量的误差,用于判断星敏感器数据的一致性;(3)星敏感器数据一致性判别;(4)星敏感器双矢量定姿;(5)在星敏感器数据置过姿态估计的初值的情况下,引入星敏感器,与陀螺组合进行卫星姿态的修正。该方法可提高轨控故障恢复的可靠性,节省故障恢复的时间,保证及时、准确地恢复轨道控制。

    一种减少航天器重力损失的变轨方法

    公开(公告)号:CN101186236A

    公开(公告)日:2008-05-28

    申请号:CN200710301743.2

    申请日:2007-12-26

    Abstract: 一种减少航天器重力损失的变轨方法,涉及航天器变轨技术领域,包括以下步骤:(1)航天器变轨前,在地面上计算轨道机动开始时间、初始姿态和姿态角速度;(2)对轨道机动开始时间、初始姿态和姿态角速度三个参数进行优化,使航天器在变轨过程中,推力的方向始终接近于航天器的速度方向;(3)将计算好的参数注入到星上;(4)航天器按照地面指令参数确定的角速度匀速旋转。本发明的变轨方法使变轨燃料消耗与沿速度方向变轨的燃料消耗非常接近,与固定推力方向变轨相比,可有效降低燃料消耗。

    基于中间停泊点的非合作类接近控制方法及装置

    公开(公告)号:CN117193380B

    公开(公告)日:2024-02-20

    申请号:CN202311443187.8

    申请日:2023-11-02

    Abstract: 本发明提供了一种基于中间停泊点的非合作类接近控制方法及装置,涉及航天器控制技术领域,方法包括:针对非合作类接近任务中相对测量敏感器难以保证连续稳定有效测量的情况下,通过确定仅仅以惯性测量敏感器的导航结果进行递推时惯性导航递推误差与递推时间的关系,以在初始点至目标终点的转移过程中设计中间停泊点,使得中间停泊点能够保证两个航天器的安全性,同时又能够保证相对测量敏感器的视场可见性,进一步控制追踪航天器在中间停泊点等待相对测量敏感器有效且相对导航重新收敛,以进行后续追踪。可见,本方案,能够在相对测量敏感器无法稳定有效测量的情况下,保证非合作类接近任务的安全可靠。

    基于中间停泊点的非合作类接近控制方法及装置

    公开(公告)号:CN117193380A

    公开(公告)日:2023-12-08

    申请号:CN202311443187.8

    申请日:2023-11-02

    Abstract: 本发明提供了一种基于中间停泊点的非合作类接近控制方法及装置,涉及航天器控制技术领域,方法包括:针对非合作类接近任务中相对测量敏感器难以保证连续稳定有效测量的情况下,通过确定仅仅以惯性测量敏感器的导航结果进行递推时惯性导航递推误差与递推时间的关系,以在初始点至目标终点的转移过程中设计中间停泊点,使得中间停泊点能够保证两个航天器的安全性,同时又能够保证相对测量敏感器的视场可见性,进一步控制追踪航天器在中间停泊点等待相对测量敏感器有效且相对导航重新收敛,以进行后续追踪。可见,本方案,能够在相对测量敏感器无法稳定有效测量的情况下,保证非合作类接近任务的安全可靠。

    航天器逆光抵近智能轨道控制方法、装置和存储介质

    公开(公告)号:CN113325704B

    公开(公告)日:2023-11-10

    申请号:CN202110450164.4

    申请日:2021-04-25

    Abstract: 本发明实施例提供一种航天器逆光抵近智能轨道控制方法,包括:根据开普勒轨道动力学方法在仿真环境中建立自身航天器运动轨迹与目标航天器运动轨迹的运动学模型;从所述运动学模型中获取自身航天器及目标航天器在t0时刻的观测量以及所述目标航天器在t0时刻的速度增量;将所述自身航天器的t0时刻的观测量输入训练效果收敛的动作网络计算t0时刻所述自身航天器的速度增量,根据所述速度增量对所述自身航天器的轨道进行控制;根据t0+T时刻所述自身航天器和目标航天器的观测量、方位角,判断速度增量进行轨道控制后自身航天器是否处于目标航天器的逆光观测范围内。利用本发明实施例可实现航天器间的逆光观测范围判断。

    航天器在轨博弈的仿真模拟方法、系统及存储介质

    公开(公告)号:CN113268859B

    公开(公告)日:2023-07-14

    申请号:CN202110448705.X

    申请日:2021-04-25

    Abstract: 本发明实施例提供一种航天器在轨博弈的仿真模拟系统,包括实时解算航天器随时间变化的位置、速度、姿态、姿态角信息的运动学模型装置,对航天器数量、机动能力、速度增量幅值、即时奖励函数、太阳方位角、碰撞情况、通讯网络、观测量进行定义的场景定义装置,建立智能算法的神经网络模型的神经网络模型建立装置,调用神经网络模型并根据航天器观测量及速度增量、t0+T时刻航天器观测量及即时奖励函数对动作网络、评价网络进行训练的智能算法装置,将神经网络模型的训练过程数据通过图形方式呈现的结果输出与性能评估装置,可视化地呈现所述航天器的运动轨迹的场景实时显示装置,利用本技术方案可以实现航天器运行状态及运动轨迹的精确模拟与评估。

    一种电推力器位置保持推力分配方法和系统

    公开(公告)号:CN113734469A

    公开(公告)日:2021-12-03

    申请号:CN202111006812.3

    申请日:2021-08-30

    Abstract: 本发明公开了一种电推力器位置保持推力分配方法和系统,该方法包括:根据位置保持漂移率控制量,确定两台电推力器的法向指向档位;根据确定的两台电推力器的法向指向档位,分别计算得到第一电推力器的目标推力方向[Xn,Yn,Zn]和开机时长Δtn,以及第二电推力器的目标推力方向[Xs,Ys,Zs]和开机时长Δts;计算得到第一理论矢量调节机构转速ωn和第二理论矢量调节机构转速ωs;将[Xn,Yn,Zn]和Δtn分配给第一电推力器,将[Xs,Ys,Zs]和Δts分配给第二电推力器,将ωn分配给第一矢量调节机构,将ωs分配给第二矢量调节机构。本发明采用完全解析的方法计算电推力器开机时长和速度增量,充分考虑了实际工程约束,可满足静止轨道卫星的位置保持任务需求。

    一种航天器深度强化学习莱维飞行控制系统

    公开(公告)号:CN113419548A

    公开(公告)日:2021-09-21

    申请号:CN202110593261.9

    申请日:2021-05-28

    Abstract: 一种航天器深度强化学习莱维飞行控制系统,包括:自主规划模块,根据航天器的状态信息获取特征,利用该特征进行预测,并获得莱维飞行参数;莱维飞行模块,利用莱维飞行参数,确定下一时刻的飞行轨迹;航天器姿轨控模块,用于控制飞行器跟踪下一时刻的飞行轨迹。本发明在莱维飞行的基础上,采用深度强化学习以综合考虑各种因素,选择最佳的飞行轨迹,以保证在最优的飞行性能。

    一种多智能体分布式强化学习方法

    公开(公告)号:CN113269329A

    公开(公告)日:2021-08-17

    申请号:CN202110484030.4

    申请日:2021-04-30

    Abstract: 一种多智能体分布式强化学习方法,包括多智能体组织形式、智能体网络设计和训练方法。通过强化学习的方式实现整个网络系统的自适应网络服务,解决网络的分布式自主覆盖、目标追踪、缺位补充等高层次协同操作背后的关键技术,提升整个系统的综合感知保障能力和自愈合能力,使得整个系统具备极强的自组织、自配置和自管理能力,具备自我防护、系统修复和重构能力,以应对外部环境的变化。

Patent Agency Ranking