-
公开(公告)号:CN110896115B
公开(公告)日:2022-06-28
申请号:CN201811062635.9
申请日:2018-09-12
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/113 , H01L31/0312 , H01L31/0216 , H01L31/18
Abstract: 本发明公开了一种光电晶体管、红外探测器和光电晶体管的制作方法。该光电晶体管包括栅极堆栈;设置于栅极堆栈一侧的有源层;设置于有源层远离栅极堆栈一侧的抗反层;其中,有源层包括沟道区,以及位于沟道区两侧的源极区和漏极区;其中,有源层的材料为锗锡合金。本发明提供的技术方案通过形成上述光电晶体管结构,并设置有源层的材料为锗锡合金,可使光电晶体管具有较高的灵敏度,且光电晶体管结构简单。
-
公开(公告)号:CN110828603B
公开(公告)日:2021-09-21
申请号:CN201810924656.0
申请日:2018-08-14
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/109 , H01L31/0336 , H01L31/18
Abstract: 本发明涉及半导体制造技术领域,尤其涉及一种基于III‑V族材料发射极区的GeSn光电晶体管及其制造方法。所述基于III‑V族材料发射极区的GeSn光电晶体管,包括衬底以及沿垂直于所述衬底的方向依次层叠于所述衬底表面的集电极区、吸收层、基极区和发射极区;所述吸收层与所述基极区采用Ge1‑xSnx材料构成,其中,0
-
公开(公告)号:CN110890436B
公开(公告)日:2021-07-23
申请号:CN201811056068.6
申请日:2018-09-11
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/0336 , H01L31/028 , H01L31/11 , H01L31/18
Abstract: 本发明涉及半导体制造技术领域,尤其涉及一种波导型GeSn光电晶体管及其制造方法。所述波导型GeSn光电晶体管包括:SOI衬底,具有由所述SOI衬底的顶层硅形成的波导层;器件结构,位于所述SOI衬底表面,包括吸收区、集电极区、基极区和发射极区,其中:所述集电极区、所述吸收区和所述基极区均采用Ge1‑xSnx材料构成、且沿平行于所述SOI衬底的方向依次排列;所述发射极区沿垂直于所述SOI衬底的方向层叠设置于所述基极区表面,以在所述发射极区与所述基极区之间形成异质结;其中,0
-
公开(公告)号:CN111834486A
公开(公告)日:2020-10-27
申请号:CN201910243160.1
申请日:2019-03-28
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/101 , H01L31/115 , H01L31/028 , H01L31/0216 , H01L31/0236 , H01L31/18
Abstract: 本发明涉及光电子技术领域,尤其涉及一种波导型GePb红外光电探测器及其制造方法。所述波导型GePb红外光电探测器,包括硅衬底以及均位于所述硅衬底表面的波导层和器件结构;所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层、吸收层和上接触层,所述吸收层的材料为Ge1-xPbx,其中,0
-
公开(公告)号:CN110957360A
公开(公告)日:2020-04-03
申请号:CN201811133445.1
申请日:2018-09-27
Applicant: 上海新微技术研发中心有限公司
IPC: H01L29/778 , H01L29/267 , H01L21/335
Abstract: 本申请提供一种硅基锗锡高电子迁移率晶体管及其制造方法,该硅基锗锡高电子迁移率晶体管包括:硅基衬底;位于所述硅基衬底上的缓冲层;位于所述缓冲层上的沟道层,所述沟道层为锗锡(GeSn)材料;以及位于所述沟道层上的间隔层,势垒层和盖层,所述间隔层,势垒层和盖层为III-V族半导体材料,其中,所述间隔层与沟道层的界面形成二维电子气,所述势垒层与栅电极连接,所述盖层与源电极和漏电极连接。根据本实施例,能够提高晶体管的高速性能,并且,GeSn容易与Si基集成电路制造技术集成。
-
公开(公告)号:CN110896115A
公开(公告)日:2020-03-20
申请号:CN201811062635.9
申请日:2018-09-12
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/113 , H01L31/0312 , H01L31/0216 , H01L31/18
Abstract: 本发明公开了一种光电晶体管、红外探测器和光电晶体管的制作方法。该光电晶体管包括栅极堆栈;设置于栅极堆栈一侧的有源层;设置于有源层远离栅极堆栈一侧的抗反层;其中,有源层包括沟道区,以及位于沟道区两侧的源极区和漏极区;其中,有源层的材料为锗锡合金。本发明提供的技术方案通过形成上述光电晶体管结构,并设置有源层的材料为锗锡合金,可使光电晶体管具有较高的灵敏度,且光电晶体管结构简单。
-
公开(公告)号:CN110767766B
公开(公告)日:2022-09-09
申请号:CN201810836030.4
申请日:2018-07-26
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/09 , H01L31/028 , H01L31/18
Abstract: 本发明涉及半导体制造技术领域,尤其涉及一种应变平衡GeSn红外光电探测器及其制造方法。所述应变平衡GeSn红外光电探测器,包括硅衬底以及依次层叠于所述硅衬底上的Ge缓冲层和吸收层;所述吸收层,包括沿垂直于所述硅衬底的方向交替堆叠的拉应变Si1‑x‑yGexSny层与压应变Ge1‑aSna层,以达到应变平衡;其中,0
-
公开(公告)号:CN110896112B
公开(公告)日:2022-04-12
申请号:CN201810958988.0
申请日:2018-08-22
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/103 , H01L31/0312 , H01L31/0232 , H01L31/18
Abstract: 本发明涉及半导体制造技术领域,尤其涉及一种波导集成的GeSn光电探测器及其制造方法。所述波导集成的GeSn光电探测器,包括GeSnOI衬底以及均位于所述GeSnOI衬底表面的光纤‑波导模斑耦合器、SiN光波导和器件结构;所述器件结构,包括沿所述GeSnOI衬底的轴向方向设置于所述GeSnOI衬底上的GeSn吸收层;所述SiN光波导的输出端沿平行于所述GeSnOI衬底的方向与所述GeSn吸收层的中心对齐连接;所述光纤‑波导模斑耦合器包括与所述SiN光波导的输入端连接的SiN反锥型波导,且所述SiN反锥型波导与所述SiN光波导同层设置。本发明能够有效避免光探测器速率与量子效率间相互制约的问题,提高了GeSn光电探测器的灵敏度以及稳定性。
-
公开(公告)号:CN111755948A
公开(公告)日:2020-10-09
申请号:CN201910242775.2
申请日:2019-03-28
Applicant: 上海新微技术研发中心有限公司
Abstract: 本发明涉及光电子技术领域,尤其涉及一种具有脊波导结构的GePb激光器及其形成方法。所述具有脊波导结构的GePb激光器,包括硅衬底以及位于所述硅衬底表面的脊波导结构;其中,所述脊波导结构包括:下接触层,位于所述硅衬底表面;有源层,凸设于所述下接触层表面,所述有源层采用Pb掺杂的Ge材料构成;上接触层,位于所述有源层表面。本发明有效提高了激光器的发射效率。
-
公开(公告)号:CN111755553A
公开(公告)日:2020-10-09
申请号:CN201910242772.9
申请日:2019-03-28
Applicant: 上海新微技术研发中心有限公司
IPC: H01L31/101 , H01L31/115 , H01L31/0288 , H01L31/18
Abstract: 本发明涉及光电子技术领域,尤其涉及一种铅掺杂型锗红外光电探测器及其形成方法。所述铅掺杂型锗红外光电探测器包括硅衬底以及位于所述硅衬底表面的器件结构;所述器件结构包括沿垂直于所述硅衬底的方向依次叠置的下接触层、锗吸收层和上接触层;所述锗吸收层中掺杂有铅元素,以扩展锗红外光电探测器的探测范围。本发明使得光电探测器在短波红外到中波红外波段都能实现高效吸收,提高了红外光电探测器的探测范围和探测灵敏度。
-
-
-
-
-
-
-
-
-