-
公开(公告)号:CN114330554A
公开(公告)日:2022-04-12
申请号:CN202111639661.5
申请日:2021-12-29
Applicant: 浙江大学
Abstract: 一种面向智能安防的视觉深度模型知识重组方法,首先,收集安防边缘测的视觉数据,明确模型任务,收集数据进行标注,训练目标任务模型。然后,利用归因图计算目标模型和不同预训练模型之间的可迁移分数,将归一化的可迁移分数作为模型选择的概率,可放回地采样形成模型集合;在联邦学习范式的基础上,将目标模型分发到不同的节点,利用表征蒸馏迁移预训练模型的特征提取能力,在目标模型学习和迁移完成后,通过平均的方式在中心节点进行知识重组,重组过后的模型再次分发到选择的模型节点进一步迭代。最后,再利用目标数据集进行微调目标模型,从而学习得到一个在智能安防领域的目标任务上表现良好的视觉深度模型,并且保护了数据隐私和模型隐私。
-
公开(公告)号:CN108986101A
公开(公告)日:2018-12-11
申请号:CN201810551553.4
申请日:2018-05-31
Applicant: 浙江大学
IPC: G06T7/10
Abstract: 用于人体图像分割的循环“抠图-分割”优化方法,利用图像抠图和分割进行两个任务的共同优化,包含以下步骤:首先原始输入图像经过级联的分割网络产生了二分类分割图和多分类分割图;然后,由图像分割产生的多类分割分数图计算出在抠图中利用的引导滤波器的权值参数,对具有抠图功能的引导滤波器组的输出进行线形组合得到抠图结果。最后由循环的“抠图-分割”优化方法先对抠图结果进行二值化得到二分割图,再输入到分割网络中更新多类分割图从而更新抠图输出,形成一个优化循环。通过以上三个步骤,本发明可以在获取有细致边缘的分割结果的同时获取同样得到优化的人像抠图结果。
-
公开(公告)号:CN105806485A
公开(公告)日:2016-07-27
申请号:CN201610157732.0
申请日:2016-03-21
Applicant: 浙江大学
IPC: G01J3/50
CPC classification number: G01J3/504
Abstract: 一种用于纺织品自动色彩采集及校准的方法。此方法由三个有效步骤组成:1)利用色彩采集装置采集CIE 1931 XYZ色彩空间数据,得到CIE 1931 XYZ色彩空间与CMYK色彩空间对应的训练数据;2)利用角点对齐的方法对步骤1)中所得训练数据与标准色块进行对齐。该色彩采集装置包含遮光罩、自动滑轴、照相机、被测样品以及测色仪。该色彩采集装置去除光照强度对采集的训练数据的影响,通过X、Y方向的滑轴自动获得被测样品上的所有色块值。通过对照相机获得被测样品的图像与标准色块对齐,得到准确的训练样本,进而保证了训练的准确性。
-
公开(公告)号:CN119295841B
公开(公告)日:2025-05-02
申请号:CN202411818625.9
申请日:2024-12-11
Applicant: 浙江大学
IPC: G06V10/764 , G06V10/74 , G06V10/82 , G06V10/774 , G06N3/0464
Abstract: 基于时空分布变化的伪造图片鉴别方法和装置,其方法包括:步骤1:获取任务训练数据,将其划分为训练集和验证集;采用所述训练数据,使用去噪扩散隐式模型去噪采样过程获得相邻噪声图的时序变化数据;获得每个候选判别因子DFactor和时间序列数据#imgabs0#之间的距离,基于KL散度的损失函数从候选DFactor的集合#imgabs1#中获得固定长度为#imgabs2#的最佳DFactor判别因子;采用最佳DFactor判别因子将时序变化数据构建成有向加权的演化图#imgabs3#;采用有向加权的演化图,学习所述时间序列的特征表示;将特征表示与对应的真假标签作为输入,训练分类器,实现伪造图片鉴别。本发明在图片伪造鉴别领域引入时序信息,不依赖于预训练加噪模型,在实际应用场景中有很好的泛化能力。
-
公开(公告)号:CN119445194A
公开(公告)日:2025-02-14
申请号:CN202411356507.0
申请日:2024-09-27
Applicant: 浙江大学软件学院(宁波)管理中心(宁波软件教育中心)
IPC: G06V10/764 , G06N3/084 , G06N3/0464 , G06N3/0895 , G06T7/00 , G06T7/73
Abstract: 本发明公开了一种位置自监督的结直肠CT图像病变识别与定位方法,其通过自动化图像级分类和Patch级定位,显著减少医生工作量,并通过自监督学习减少对标注数据的依赖,具体包括构建多模态CT扫描序列数据集,关键帧选取与标注,图像预处理,以及结直肠CT图像识别与定位网络的构建和训练;网络包含图像级分类分支和Patch级定位分支,后者通过病变位置自监督模块增强病变区域识别;方法还包括时序和模态一致性约束,以提高病变区域位置定位的准确性;此外,方法通过掩码校正回路策略,增强类别标签与病变位置的一致性;本发明方法作为辅助工具,能够有效辅助医生进行手术规划和治疗选择,具有重要的临床应用价值。
-
公开(公告)号:CN119130492A
公开(公告)日:2024-12-13
申请号:CN202411234924.8
申请日:2024-09-04
Applicant: 浙江大学宁波“五位一体”校区教育发展中心
IPC: G06Q30/018 , G06Q50/50 , G06F18/213 , G06F18/24 , G06F18/2135 , G06N3/048
Abstract: 一种针对快速变异信息的小样本电信反欺诈方法和装置,其方法包括:利用通用大模型构建特征抽取器;利用新数据收集支撑数据集;利用通用大模型收集支撑数据集的特征向量;获取支撑数据集的表征向量表达,组装特征矩阵;训练扩展小模型以适配新的数据风险。本发明首先收集小样本的支持数据集,通常为几条至几十条不等,然后利用超大规模语言模型对支撑文本进行数值特征转换,保留文本语义的同时降低大样本的需求;接着在支撑文本的样例空间进行降维,保留对新风险识别精度最大贡献的维度,最后在新特征空间中训练小模型完成新风险的识别。本发明针对快速变异的电信反欺诈识别问题,提供一种可持续发展的可快速迭代的小样本电信欺诈风险识别方法。
-
公开(公告)号:CN117011525A
公开(公告)日:2023-11-07
申请号:CN202310880957.9
申请日:2023-07-18
Applicant: 浙江大学
IPC: G06V10/26 , G06V10/40 , G06V10/80 , G06V10/82 , G06N3/0985 , G06N3/0495
Abstract: 一种面向视觉大模型的解耦优化算法和系统,其算法包括以下步骤:1)提取类别语义特征;2)类别语义特征优化;3)根据类别语义信息压缩模型参数。本发明找到与特定任务相关的类别语义信息,取代交互式大模型的提示信息,完成特定任务解耦,同时通过增加硬编码,从而完成对模型架构的缩减与整体网络性能的优化。
-
公开(公告)号:CN116842708A
公开(公告)日:2023-10-03
申请号:CN202310718754.X
申请日:2023-06-16
Applicant: 浙江大学
IPC: G06F30/20 , G06F16/215 , G06F18/214 , G06F18/24
Abstract: 一种基于正则化的在线指数凹优化方法,包含:步骤1.收集公开数据集,对数据集进行数据清洗和分析;步骤2.对参数进行初始化设置;分别对四个参数进行初始化设置;步骤3.对获得的在线数据,根据学习到的模型给出决策,然后获得本轮基于真实标签与决策差异的损失;步骤4.根据损失函数信息做决策更新;决策更新主要分成两个部分:对每个损失函数中的指数凹部分执行ONS迭代、对正则化部分使用近端映射;步骤5.记录本轮学习到的参数,基于此得到一个模型,该模型用于步骤3中,然后重复步骤3和步骤4,对参数不断进行学习和更新,直至完成T轮博弈。本发明有能力利用的指数凹性来实现与ONS相同的遗憾界并达到正则化的效果。
-
公开(公告)号:CN116363418A
公开(公告)日:2023-06-30
申请号:CN202310240413.6
申请日:2023-03-06
IPC: G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本说明书公开了一种训练分类模型的方法、装置、存储介质及电子设备。本方法通过确定各子网络层对应的输入维度中的无效维度,确定了对分类模型的输出结果无效的各子网络层对应的无效维度上各计算节点输出的结果,根据这些输出的结果确定第一损失,根据基于训练样本标注确定的第二损失以及该第一损失,确定总损失,以总损失最小训练分类模型,减少了各子网络层对应的无效维度上各计算节点输出的结果对分类模型的输出结果的影响,提高了分类模型的分类准确性。
-
公开(公告)号:CN106937018B
公开(公告)日:2019-03-05
申请号:CN201710022650.X
申请日:2017-01-12
Applicant: 浙江大学
IPC: H04N1/54
Abstract: 一种基于RBF(Radical Basis Function)神经网络用于纺织品数码印花的色彩映射方法。此方法由下面三个部分组成:首先设计节省油墨量的CMYK样本集,利用测色仪采集颜色样本数据;对于印染机色域内颜色,利用RBF神经网络建立RGB与CMYK之间的转换关系;对于印染机色域外颜色,通过四种压缩方法,获得色域内的替换颜色。通过上述3个步骤建立的转换关系,可以将任何一张RGB图片精确地转换为对应CMYK颜色值图片,用于纺织品花型稿的喷墨印染。
-
-
-
-
-
-
-
-
-