一种针对快速变异信息的小样本电信反欺诈方法和装置

    公开(公告)号:CN119130492A

    公开(公告)日:2024-12-13

    申请号:CN202411234924.8

    申请日:2024-09-04

    Abstract: 一种针对快速变异信息的小样本电信反欺诈方法和装置,其方法包括:利用通用大模型构建特征抽取器;利用新数据收集支撑数据集;利用通用大模型收集支撑数据集的特征向量;获取支撑数据集的表征向量表达,组装特征矩阵;训练扩展小模型以适配新的数据风险。本发明首先收集小样本的支持数据集,通常为几条至几十条不等,然后利用超大规模语言模型对支撑文本进行数值特征转换,保留文本语义的同时降低大样本的需求;接着在支撑文本的样例空间进行降维,保留对新风险识别精度最大贡献的维度,最后在新特征空间中训练小模型完成新风险的识别。本发明针对快速变异的电信反欺诈识别问题,提供一种可持续发展的可快速迭代的小样本电信欺诈风险识别方法。

    基于模板学习与比对的薄面外观缺陷检测方法

    公开(公告)号:CN116912166A

    公开(公告)日:2023-10-20

    申请号:CN202310647375.6

    申请日:2023-06-02

    Abstract: 基于模板学习与比对的薄面外观缺陷检测方法,包括:1)基于良品图像自动学习构建模板原型;2)对每个模板原型,检测待检测样本图像中的模板实例;3)对每个模板实例,将对应的模板原型与模板实例区域进行映射对齐;4)对每个模板实例,将应映射对齐后的模板实例和模板原型进行比对得到特征差异图;5)对每个模板实例的特征差异图,应用缺陷检测算法参数提取模板实例内的缺陷信息;6)综合所有模板实例的缺陷信息,输出产品OK/NG判定和缺陷信息列表。本发明综合多种技术手段实现对平面规则内容产品的准确、灵活、高效的外观缺陷检测。

Patent Agency Ranking