一种针对快速变异信息的小样本电信反欺诈方法和装置

    公开(公告)号:CN119130492A

    公开(公告)日:2024-12-13

    申请号:CN202411234924.8

    申请日:2024-09-04

    Abstract: 一种针对快速变异信息的小样本电信反欺诈方法和装置,其方法包括:利用通用大模型构建特征抽取器;利用新数据收集支撑数据集;利用通用大模型收集支撑数据集的特征向量;获取支撑数据集的表征向量表达,组装特征矩阵;训练扩展小模型以适配新的数据风险。本发明首先收集小样本的支持数据集,通常为几条至几十条不等,然后利用超大规模语言模型对支撑文本进行数值特征转换,保留文本语义的同时降低大样本的需求;接着在支撑文本的样例空间进行降维,保留对新风险识别精度最大贡献的维度,最后在新特征空间中训练小模型完成新风险的识别。本发明针对快速变异的电信反欺诈识别问题,提供一种可持续发展的可快速迭代的小样本电信欺诈风险识别方法。

Patent Agency Ranking