一种屏蔽型镁钽多层复合板的制备方法

    公开(公告)号:CN112742870A

    公开(公告)日:2021-05-04

    申请号:CN202011475464.X

    申请日:2020-12-14

    Abstract: 本发明公开了一种屏蔽型镁钽多层复合板的制备方法,所述屏蔽型复合板包括钽或钽合金作为高Z金属相,镁或镁合金作为低Z金属相。本发明公开的镁/钽复合板制备方法包括以下步骤:(1)对钽板和镁板分别进行退火处理;(2)对退火后板材进行表面处理,去除表面的氧化层、杂质和油污;(3)将上一步骤得到的板材进行堆叠,随后放入包套中抽真空、封焊,制成板坯;(4)将组装好的板坯入炉加热保温,送入轧机进行轧制,空冷后去除包套,得到镁/钽双金属多层复合板。本发明通过轧制的方式将镁(镁合金)和钽(钽合金)两种材料进行整体复合,制备方法简单、成本低、易于工业化生产,可以替代传统的抗电子辐射屏蔽材料。

    一种高体积分数钨颗粒增强铝基复合材料的制备方法

    公开(公告)号:CN109868381B

    公开(公告)日:2020-12-18

    申请号:CN201711265537.0

    申请日:2017-12-04

    Abstract: 本发明公开了一种高体积分数钨颗粒增强铝基复合材料的制备方法,该方法包括以下步骤:(1)将钨粉在双锥混料机中进行预处理,得到预处理钨粉;(2)将预处理钨粉与铝粉按配比混合,使用双锥混料机混合均匀,得到复合粉体;(3)将复合粉体进行冷等静压成型,冷等静压压力为50MPa~200MPa,保压时间为10min~40min,得到冷等静压坯锭;(4)将冷等静压坯锭装在铝包套中,使用热等静压烧结的方法成型,得到热等静压态钨颗粒增强铝基复合材料;(5)将得到的热等静压态钨颗粒增强铝基复合材料置于耐高压快速升温试验台中进行真空等温锻压热变形处理。采用本发明的方法制备的复合材料具有致密度高、增强相分布均匀、综合力学性能好等优点。

    一种钨颗粒增强铝基复合材料的制备方法

    公开(公告)号:CN109706337A

    公开(公告)日:2019-05-03

    申请号:CN201811621296.3

    申请日:2018-12-28

    Abstract: 本发明公开了属于复合材料加工制备技术领域的一种钨颗粒增强铝基复合材料的制备方法。本发明方法包括以下步骤:(1)以乙醇为混料介质,将钨粉置于混料机中混料,真空干燥后得到预处理钨粉;(2)将铝粉或铝合金粉与步骤(1)所得预处理钨粉混合,得到复合粉体;(3)对步骤(2)所得复合粉体进行冷等静压、真空脱气、热等静压烧结、墩粗、热挤压、热处理,制得钨颗粒增强铝基复合材料;利用本发明制备方法,能够显著提高铝基复合材料的致密度、细化材料显微组织结构、降低材料的各向异性,拓展了铝基复合材料的应用范围。

    一种三维网状结构的镁基复合屏蔽材料及其制备方法

    公开(公告)号:CN119020651A

    公开(公告)日:2024-11-26

    申请号:CN202411041852.5

    申请日:2024-07-31

    Abstract: 本发明公开了一种三维网状结构的镁基复合屏蔽材料及其制备方法,属于镁基复合屏蔽材料技术领域。三维网状结构的镁基复合屏蔽材料包含30wt%‑60wt%的钨、30wt%‑50wt%的碳化硼和10wt%‑40wt%的镁基体,钨的平均粒径≤10μm,碳化硼的平均粒径≤40μm,镁基体的平均粒径≤80μm,钨或碳化硼与镁基体的平均粒径之比在1:16‑1:2之间,得到的屏蔽组元颗粒呈三维网状分布的镁基复合屏蔽材料,该复合屏蔽材料的密度为2.9g/cm3‑5.0g/cm3。本发明通过粉体颗粒粒径匹配,实现了屏蔽组元颗粒三维网状分布,解决了以往单纯依靠提高复合屏蔽材料中屏蔽组元体积分数而导致的屏蔽组元分散性差、屏蔽性能提升有限的问题,该新型屏蔽材料具有小型化、轻量化、屏蔽性能可灵活调整等特点。

    一种高温释氢金属复合材料及其制备方法

    公开(公告)号:CN111020302A

    公开(公告)日:2020-04-17

    申请号:CN201911398405.4

    申请日:2019-12-30

    Abstract: 本发明公开了属于储氢材料技术领域的一种高温释氢金属复合材料及其制备方法。所述材料由金属基体和金属氢化物复合而成。所述金属基体为铝、铝合金或镁合金中的一种或几种;所述金属氢化物为氢化锆或氢化钛中的一种或几种。通过调整金属氢化物的含量实现所述材料的氢气释放量的精确调控,其氢气释放量的可调范围为:1000μg/g~10000μg/g。通过粉末冶金法热等静压成型工艺实现材料的致密化烧结。所述材料具有较高的致密度、良好的力学性能和高温稳定性,且长期放置于空气中储存后其外观和氢气释放量不会发生明显变化,可用于氢含量测试标样和其它需要在650℃高温以上精确控制氢气释放量的场合。

Patent Agency Ranking