-
公开(公告)号:CN116738444A
公开(公告)日:2023-09-12
申请号:CN202311021069.8
申请日:2023-08-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 一种基于夏普利值的数据安全共享平台多方贡献度评估方法,属于数据治理计算机模型的技术领域。本发明综合考虑了服务分析模型改进程度、数据质量和数据参与度三个方面,在数据共享平台中,服务方根据自己的数据需求与数据所有者进行数据匹配,在安全数据传输与认证后,将匹配好的数据通过服务分析模型进行训练与评估,最后根对多个参与者的贡献进行评估。本发明能够更加公平合理地为数据所有者和服务方评估其贡献,提高各方数据共享的积极性,鼓励数据所有者提供真实可靠的数据。
-
公开(公告)号:CN115873819B
公开(公告)日:2023-05-02
申请号:CN202310009831.4
申请日:2023-01-05
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于计算生物学、计算机辅助设计和酶工程技术领域,具体涉及基于超级计算辅助获得D‑氨基酸转氨酶突变体及其应用。本发明基于超级计算辅助技术成功获得一种新的D‑氨基酸转氨酶突变体并对该酶进行了应用。与野生型酶相比,上述D‑氨基酸转氨酶突变体在40℃的半衰期t1/2>12 h,而野生型D‑氨基酸转氨酶仅为8.8 min,突变体的半失活温度T5015为45.3℃,比野生型D‑氨基酸转氨酶提高了约5.4℃。从而显著提高了其热稳定性及酶活性等,有效拓宽其应用领域和范围,具有广泛的工业应用前景,因此具有良好的实际应用之价值。
-
公开(公告)号:CN115834248A
公开(公告)日:2023-03-21
申请号:CN202310063509.X
申请日:2023-02-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据处理相关技术领域,提出了面向信息物理系统的攻击和异常数据流检测方法及装置,包括:获取信息物理系统中实时数据流并将所获取的数据流转换为数据对象集;对所述数据对象集进行预处理后输入至训练好的反向传播网络中,得到数据对象集所对应的数据标签;根据数据对象集所对应的数据标签判断当前数据是否被攻击或攻击类型,对可能存在的威胁进行快速检测。
-
公开(公告)号:CN114781008B
公开(公告)日:2022-10-28
申请号:CN202210395273.5
申请日:2022-04-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东钢铁集团永锋临港有限公司
Abstract: 本发明公开了面向物联网终端固件安全检测的数据识别方法,包括:对待分析固件进行解压;以解压待分析固件的目录作为根目录,遍历根目录中所有文件,若文件类型非链接类或图片类,则使用二进制方式读取文件内容,并利用预先编写的正则表达式匹配特定格式数据,将与预先编写的正则表达式匹配的数据加入预筛选数据集合;提取预筛选数据集合内各数据所属文件中与各数据相关的特征字符,并计算特征字符与预设关键字符集的相似度,并根据相似度降序,对各数据进行验证。本发明还提供了面向物联网终端固件安全检测的数据识别装置。本发明能够对固件中特定格式数据进行检测和提取,降低因固件中存在特定格式数据而造成的安全和隐私泄露风险。
-
公开(公告)号:CN110708160A
公开(公告)日:2020-01-17
申请号:CN201910959287.3
申请日:2019-10-10
Applicant: 山东省计算中心(国家超级计算济南中心)
Inventor: 付勇 , 杨美红 , 王美琴 , 郭山清 , 王继志 , 陈丽娟 , 樊燕红 , 杨明 , 杨英 , 陈振娅 , 穆超 , 李冠霖 , 杨光 , 文立强 , 王彪 , 杨明瞾 , 王英龙
IPC: H04L9/30
Abstract: 本公开公开了基于SM2算法标量乘法编码的抗侧信道攻击方法及系统,包括:生成基准坐标表,生成预编码坐标参数表ParTable;获取椭圆曲线公钥密码算法的参数k;基于基准坐标表、预编码坐标参数表ParTable和椭圆曲线公钥密码算法的参数k,实时生成编码表;基于实时生成的编码表,完成椭圆曲线公钥密码算法中的固定点标量乘法kG的运算,在椭圆曲线公钥密码的数字签名生成过程、数字签名验证过程、加密过程或密钥交换协商过程中使用运算获取的kG,抵御侧信道攻击。
-
公开(公告)号:CN119808896B
公开(公告)日:2025-05-23
申请号:CN202510296997.8
申请日:2025-03-13
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/098 , G06F21/62 , G06F18/2132 , G06F18/214
Abstract: 本发明属于隐私保护的技术领域,更具体地,涉及面向保隐私异构去中心化学习的正则约束自适应调整方法。所述方法包括:将每个客户端#imgabs0#的本地模型#imgabs1#划分为共享模型#imgabs2#和保留模型#imgabs3#,对共享模型#imgabs4#进行正则化约束;客户端#imgabs5#使用上一轮聚合后的共享模型#imgabs6#和本地保留模型#imgabs7#,基于本地数据集#imgabs8#进行梯度下降更新;通过KL散度对正则化参数#imgabs9#进行动态更新调整;对共享模型进行差分隐私保护,然后将加噪后的共享模型广播给邻居客户端;客户端i的邻居客户端接收加噪后的共享模型并进行聚合,以得到下一迭代轮次的本地模型。本发明在保护数据隐私的同时,减轻数据异质性和差分隐私噪声对模型性能的负面影响。
-
公开(公告)号:CN119892499A
公开(公告)日:2025-04-25
申请号:CN202510360779.6
申请日:2025-03-26
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: H04L9/40 , G06F18/15 , G06F18/214 , G06F18/2135 , G06F18/21 , G06F18/2433 , G06N3/0442 , G06N3/0464 , G06N3/0475 , G06N3/0455 , G06N3/094
Abstract: 本发明属于数据分析与网络安全技术领域,具体涉及一种基于物理约束与自适应阈值的虚假数据注入攻击检测和定位方法。所述方法包括:通过预处理多个传感器的测量数据,将数据输入到基于物理约束和时间条件嵌入的WGAN框架进行训练;WGAN生成符合物理规律的高质量合成数据,并结合LSTM捕捉时间序列的长短期特性;随后,利用CNN‑Transformer模型进行全局特征提取和动态阈值生成,结合基于分位数的动态检测机制分析正常数据的分布,精准定位潜在攻击来源;最终,通过循环优化模型架构与参数,提升检测与定位的精度与效率。
-
公开(公告)号:CN119670916A
公开(公告)日:2025-03-21
申请号:CN202510200623.1
申请日:2025-02-24
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N20/00 , G06F18/213 , G06F18/2115 , G06F18/2413
Abstract: 本发明属于联邦学习的技术领域,具体涉及一种基于特征对比优化与分类器动态集成的联邦学习方法及装置。其方法包括:通过服务器初始化全局模型并将其下发给参与联邦学习的#imgabs0#个客户端,客户端基于接收到的全局模型进行本地模型更新以及对更新后的本地模型进行训练,再利用训练后的本地特征提取器对其本地私有数据集进行特征提取,以构建本地特征原型集合,再将本地模型、本地特征原型集合、客户端总样本量上传至服务器,服务器在全局聚合时,使用对比学习技术提升全局特征原型质量,最后将聚合得到的全局原型和全局特征原型集合下发给各客户端,执行下一轮次的学习,直至本地模型收敛或到达设定的通信轮次。
-
公开(公告)号:CN119622379A
公开(公告)日:2025-03-14
申请号:CN202411695228.7
申请日:2024-11-25
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 泰华智慧产业集团股份有限公司
IPC: G06F18/2321 , G06F18/10 , G06F18/214 , G06F18/21 , G06F18/213 , G06N3/0455 , G06N3/08
Abstract: 本发明属于数据处理分析的技术领域,更具体地,涉及一种基于动态聚类算法DeepDPM的工业系统运行模式刻画方法。所述方法包括:首先收集系统实际运行数据。将数据进行预处理,并按照固定比例划分训练集和验证集;然后建立AE模型,使用训练集对AE进行预训练,并保存训练完成后的AE模型和权重,再使用验证集来验证训练后AE模型的效果。接下来将预处理后的数据输入到训练好的AE模型中进行特征提取;再将提取出的特征数据输入到DeepDPM模型中进行聚类;最后使用一种降维可视化算法:t分布随机邻域嵌入,简称t‑SNE,对聚类结果进行可视化展示。本发明解决了提高工业系统中运行模式预测的效率和准确性问题。
-
公开(公告)号:CN119544262A
公开(公告)日:2025-02-28
申请号:CN202411478540.0
申请日:2024-10-22
Applicant: 国网山东省电力公司电力科学研究院 , 山东省计算中心(国家超级计算济南中心) , 国网山东省电力公司聊城供电公司
IPC: H04L9/40 , H04L67/1001 , H04L67/12
Abstract: 本公开涉及网络安全技术领域,提出了一种智能电网自适应防御与流量动态优化方法及系统,包括如下步骤:获取智能电网的实时网络流量;采用基于机器学习算法对获取的实时网络流量进行检测,判断是否受到DoS攻击;对于检测到的攻击流量,自动执行DoS攻击防御响应措施;对于检测到的正常流量,通过网络负载均衡,以及基于核密度估计的优先级队列管理进行优化,对网络流量进行网络流量动态管理。本公开能够及时识别、应对智能电网中的拒绝服务(DoS)攻击,同时通过流量动态优化管理,优化网络资源的分配,提升整体网络性能,提高电力系统运行的稳定性。
-
-
-
-
-
-
-
-
-