-
公开(公告)号:CN116032775A
公开(公告)日:2023-04-28
申请号:CN202310025793.1
申请日:2023-01-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 哈尔滨工业大学(威海)
IPC: H04L41/14 , G06N20/10 , G06N3/08 , G06N3/0455 , G06N3/0442 , H04L41/142
Abstract: 本发明涉及一种面向概念漂移的工业控制网络异常检测方法,该方法以实时多维数据流作为目标数据。该方法在初始数据流上训练教师模型和单类支持向量机模型;对于每批次数据流,都基于教师模型训练一个新的学生模型;利用学生模型对当前批次数据流进行异常检测,并利用单类支持向量机模型清洗正常数据中的异常值以获得更新模型所需要的训练数据;利用旧的学生模型获得当前批次数据流和前一批次数据流的异常分数集,然后根据Hoeffding不等式计算模型的可靠性,从而计算模型的参数系数,利用参数系数更新模型以适应概念漂移。本发明可以有效解决异常检测模型在概念发生漂移时的效率衰减问题。
-
公开(公告)号:CN114926680A
公开(公告)日:2022-08-19
申请号:CN202210524306.1
申请日:2022-05-13
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于AlexNet网络模型的恶意软件分类方法及系统,包括:数据预处理:以二进制方式读取恶意软件;求取转移概率矩阵;标准化处理转移概率矩阵;在转移概率矩阵上应用色图,将恶意软件二进制文件可视化为恶意软件彩色图像,使用改进的CLAHE算法对恶意软件彩色图像进行增强处理。训练恶意软件分类模型即AlexNet网络模型;将待检测的恶意软件通过数据预处理后输入训练好的恶意软件分类模型得到恶意软件分类结果;本发明模型泛化能力强,同时避免信息的冗余或丢失问题,在增强图像的对比度同时能够抑制噪声,有效的提高分类的准确率;网络层数和模型参数减少,训练过程中消耗的时间和空间要少很多,分类速度明显提升。
-
公开(公告)号:CN119130802B
公开(公告)日:2025-04-22
申请号:CN202411612028.0
申请日:2024-11-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/4046 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开一种基于动态卷积和特征融合的图像压缩感知重构方法及系统,涉及图像处理技术领域,该方法为:获取待压缩感知重构的原始图像;将原始图像输入至训练完成的图像压缩感知模型中,经模型中的采样子网和初始化重构子网,进行分块采样并提取初始化重构特征图,初始化重构特征图再输入至模型中的深度重构子网,经并行的动态卷积分支和Transformer分支,分别依次提取多尺度的动态卷积局部特征和全局特征,并通过加权特征融合模块对相同尺度的两特征融合,最终输出图像的融合特征,经重构后,模型输出高质量的重构图像。本发明采用动态卷积和Transformer分支结构,结合特征自适应融合,有效提高重构图像的质量。
-
公开(公告)号:CN119130802A
公开(公告)日:2024-12-13
申请号:CN202411612028.0
申请日:2024-11-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/4046 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开一种基于动态卷积和特征融合的图像压缩感知重构方法及系统,涉及图像处理技术领域,该方法为:获取待压缩感知重构的原始图像;将原始图像输入至训练完成的图像压缩感知模型中,经模型中的采样子网和初始化重构子网,进行分块采样并提取初始化重构特征图,初始化重构特征图再输入至模型中的深度重构子网,经并行的动态卷积分支和Transformer分支,分别依次提取多尺度的动态卷积局部特征和全局特征,并通过加权特征融合模块对相同尺度的两特征融合,最终输出图像的融合特征,经重构后,模型输出高质量的重构图像。本发明采用动态卷积和Transformer分支结构,结合特征自适应融合,有效提高重构图像的质量。
-
公开(公告)号:CN118917315A
公开(公告)日:2024-11-08
申请号:CN202411127569.4
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F40/295 , G06N3/045 , G06N3/0464 , G06N3/0442 , G06F40/30 , G06F40/253 , G06N3/048 , G06F16/35
Abstract: 本发明涉及基于Bert与深度学习模型的威胁情报实体检测方法,包括:首先,利用预训练的BERT模型捕捉文本的基本语义信息,并构建语法结构图;然后,将语法结构图被送入图注意力网络处理,分析实体间的复杂依赖关系;同时,将BERT模型输出的CLS向量与通过Text‑CNN处理得到的全局向量进行拼接,形成包含全局上下文信息和局部细节特征的HCV;此外,获得单词时序上下文信息以及实体单词之间的重要性关联;最后,将来自不同模块的向量进行融合,放入条件随机场层进行实体的识别,获得威胁实体的输出。本发明在处理网络安全领域专业术语和复杂语境时,表现出更优异的性能。
-
公开(公告)号:CN118761063A
公开(公告)日:2024-10-11
申请号:CN202411251863.6
申请日:2024-09-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/0455 , G06N3/082 , G06N3/042
Abstract: 本公开提供了一种基于图表示和稀疏Transformer的高阶漏洞检测方法及系统,涉及信息安全检测技术领域,包括:获取模块程序源代码的字符流数据;对所述字符流数据进行词法分析,将全局变量或用户控制的输入的变量持久化存储的变量信息保存到数据表中;生成每个源代码的代码属性图,通过查找数据表持久化存储的变量信息,生成程序之间的持久化存储数据流关系;将持久化存储数据流关系输入GNN模块中学习图中节点的信息,得到节点的嵌入向量;将节点的嵌入向量再输入到具有稀疏注意力Transformer模块中,利用基于阈值的剪枝句子修剪算法在Transformer中逐层修剪句子,并进行注意力稀疏化,自适应地删除不相关句子,将高阶漏洞转化为低阶漏洞。
-
公开(公告)号:CN118433396A
公开(公告)日:2024-08-02
申请号:CN202410888157.6
申请日:2024-07-04
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: H04N19/192 , H04N19/176 , H04N19/136 , H04N19/44 , G06T9/00 , G06N3/0464 , G06N3/084
Abstract: 本发明提供了一种多位置特征增强的压缩感知图像重构方法及系统,涉及图像处理技术领域,所述方法包括:获取原始图像;将原始图像输入图像重构模型中进行重构,获得重构图像;其中,所述图像重构模型包括依次连接的采样模块、初始化重构模块和深度重构模块;所述深度重构模块包括多个依次连接的轻型递归重构块;每个轻型递归重构块连接前一个轻型递归重构块输出的重构特征与采样模块输出的采样特征,得到连接特征,对连接特征进行若干次递归重构后,得到递归重构特征,再将递归重构特征与连接特征相连,得到该轻型递归重构块的重构特征。本发明能够在降低计算量的同时提高重构精度。
-
公开(公告)号:CN115953303B
公开(公告)日:2023-05-23
申请号:CN202310238326.7
申请日:2023-03-14
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T3/40 , G06V10/77 , G06V10/774 , G06V10/80
Abstract: 本发明属于图像处理相关技术领域,本发明提出了结合通道注意力的多尺度图像压缩感知重构方法及系统,包括:将原始图像转换为灰度图像,对灰度图像进行多尺度分块采样得到采样值,对所述采样值通过第一通道注意力模块计算输出特征的多通道融合矩阵,将所述多通道融合矩阵与采样值运算处理得到初始重建图像;将初始重建图像经过特征提取后依次经过第二通道注意力模块、多尺寸残差模型进行特征的多尺度融合,得到深度重建图像;将所述初始重建图像和深度重建图像进行结合,得到重构图像。通过图像初始重建和深度重建,在提取深度特征的同时也考虑了浅层特征对重构的影响,使得重构效果好。
-
公开(公告)号:CN114595448B
公开(公告)日:2022-09-27
申请号:CN202210247513.7
申请日:2022-03-14
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种基于相关性分析和三维卷积的工控异常检测方法、系统、设备及存储介质,该方法以工控系统传感器和执行器数据作为目标数据。计算相邻时间采集到的目标数据之间的相关性,以确定最长序列长度,进一步根据最长序列长度确定RGB图的大小,计算观测数据的相关性并与序列长度列表对比得到粗粒度异常序列;根据序列长度列表得到不同长度的序列作为输入,利用改进的三维卷积神经网络从时空两个维度学习数据特征,深度解析数据关键信息点,从细粒度分析异常数据。本发明从粗粒度和细粒度两阶段分析工控数据,可以有效检测工控过程中的异常数据,实现异常检测准确率的提升。
-
公开(公告)号:CN118761063B
公开(公告)日:2025-03-18
申请号:CN202411251863.6
申请日:2024-09-09
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/56 , G06N3/0455 , G06N3/082 , G06N3/042
Abstract: 本公开提供了一种基于图表示和稀疏Transformer的高阶漏洞检测方法及系统,涉及信息安全检测技术领域,包括:获取模块程序源代码的字符流数据;对所述字符流数据进行词法分析,将全局变量或用户控制的输入的变量持久化存储的变量信息保存到数据表中;生成每个源代码的代码属性图,通过查找数据表持久化存储的变量信息,生成程序之间的持久化存储数据流关系;将持久化存储数据流关系输入GNN模块中学习图中节点的信息,得到节点的嵌入向量;将节点的嵌入向量再输入到具有稀疏注意力Transformer模块中,利用基于阈值的剪枝句子修剪算法在Transformer中逐层修剪句子,并进行注意力稀疏化,自适应地删除不相关句子,将高阶漏洞转化为低阶漏洞。
-
-
-
-
-
-
-
-
-