基于特征加权贝叶斯优化算法的空中飞行物识别方法

    公开(公告)号:CN111476321B

    公开(公告)日:2022-05-17

    申请号:CN202010420676.1

    申请日:2020-05-18

    Abstract: 基于特征加权贝叶斯优化算法的空中飞行物识别方法涉及一种空中飞行物识别方法。本发明是为了解决现有的空中飞行物的识别方法存在的准确率较低的问题。本发明通过对空中飞行物的特征数据分布情况进行分析,将特征重叠部分的分布情况中分布跨度和分布密度作为特征的权值计算依据,将其作为朴素贝叶斯识别模型的输入特征的权重,进而基于特征加权贝叶斯优化算法的结果实现空中飞行物的识别。主要用途飞行物的识别。

    融合义原信息的语言含义理解方法

    公开(公告)号:CN112464673A

    公开(公告)日:2021-03-09

    申请号:CN202011431776.0

    申请日:2020-12-09

    Abstract: 融合义原信息的语言含义理解方法,属于语言信息处理技术领域。为了解决现有的语言建模方法存在复杂度较高的问题和不能兼顾效果的问题。本发明所述方法首先将语言以每个单词为单位,按照两条路径进行处理;左路径:单词编码器+RNN+单词解码器,左路径输出记为wl;右路径:义原编码器+RNN+义原解码器+词语解码器+sigmoid,右路径输出记为wr;然后将两个路径的输出进行融合。主要用于语言含义理解。

    基于上下文关联注意力机制和简化LSTM网络的入侵检测方法

    公开(公告)号:CN111865932A

    公开(公告)日:2020-10-30

    申请号:CN202010611789.X

    申请日:2020-06-30

    Abstract: 基于上下文关联注意力机制和简化LSTM网络的入侵检测方法,涉及网络安全技术领域,针对现有技术中入侵检测系统检测准确率低的问题,由于网络入侵流量数据具有一定的时序性和特征冗余性,因此本发明采用上下文关联注意力机制(CCAM,Contextual Connection Attention Mechanism)和简化LSTM网络(SLSTM,Simplify Long Short-Term Memory Network)的入侵检测方法,不仅能够过滤或弱化检测数据的冗杂信息,增加数据的上下文联系,还能提取关键数据信息,提高训练速度,增强入侵行为检测的准确率。

    基于自适应卷积的水声信号分类识别方法

    公开(公告)号:CN111460932B

    公开(公告)日:2022-06-21

    申请号:CN202010188704.1

    申请日:2020-03-17

    Abstract: 基于自适应卷积的水声信号分类识别方法,本发明涉及水声信号分类识别方法。本发明的目的是为了解决现有模型对特征提取能力不足导致分类准确率低的问题。过程为:一、建立自适应卷积神经网络模型;二、将带标签的水声信号分为训练集和测试集;将训练集输入模型,对模型进行训练,得到预训练好的自适应卷积神经网络模型;将测试集输入预训练好的模型,若测试准确率大于等于85%,则认为模型为最终训练好的模型;否则对模型参数进行调整,并再次利用训练集进行模型训练;直到获得训练好的模型。三、将待测试的水声信号输入训练好的自适应卷积神经网络模型,完成对水声信号的分类识别。本发明用于水声信号分类识别领域。

    基于上下文关联注意力机制和简化LSTM网络的入侵检测方法

    公开(公告)号:CN111865932B

    公开(公告)日:2022-04-12

    申请号:CN202010611789.X

    申请日:2020-06-30

    Abstract: 基于上下文关联注意力机制和简化LSTM网络的入侵检测方法,涉及网络安全技术领域,针对现有技术中入侵检测系统检测准确率低的问题,由于网络入侵流量数据具有一定的时序性和特征冗余性,因此本发明采用上下文关联注意力机制(CCAM,Contextual Connection Attention Mechanism)和简化LSTM网络(SLSTM,Simplify Long Short‑Term Memory Network)的入侵检测方法,不仅能够过滤或弱化检测数据的冗杂信息,增加数据的上下文联系,还能提取关键数据信息,提高训练速度,增强入侵行为检测的准确率。

    一种基于语义增强的标题短文本分类方法

    公开(公告)号:CN111460147A

    公开(公告)日:2020-07-28

    申请号:CN202010214338.2

    申请日:2020-03-24

    Abstract: 一种基于语义增强的标题短文本分类方法,它属于文本分类技术领域。本发明解决了现有方法对情报数据挖掘中的标题短文本分类的精确度低的问题。本发明对采集的标题短文本以及标题短文本对应的文章内容进行预处理后,将预处理后的文章内容作为样本数据的扩充语料,另外还通过特征检索的方式获得了标题短文本的扩充语料,并且利用验证集对模型参数寻优时获得的优质数据集对训练集进行更新,即本发明对标题短文本进行了CSE编码语义增强和ASE自主语义增强,通过语义增强技术对标题短文本进行分类,可以有效提高FastText分类器在短文本分类上的精确度,分类精度将有近30%的大幅度提升。本发明可以应用于短文本分类。

    一种基于二阶反向传播优先级的游戏策略获得方法

    公开(公告)号:CN111001161A

    公开(公告)日:2020-04-14

    申请号:CN201911351336.1

    申请日:2019-12-24

    Abstract: 一种基于二阶反向传播优先级的游戏策略获得方法,它属于智能化决策获取技术领域。本发明解决了在游戏策略的指挥决策过程中存在的数据利用率低以及策略质量低的问题。本发明方法结合了DPSCRM方法和BPTM方法,通过样本序列的累计奖赏值构建第一级奖赏值,可以获得高质量的策略;基于TD-error构建优先级可以反向衰减传播的第二级优先级,可以提升数据利用率。本发明可以应用于游戏策略的获取。

    一种基于DDGPES的机器人控制方法

    公开(公告)号:CN110919659A

    公开(公告)日:2020-03-27

    申请号:CN201911351334.2

    申请日:2019-12-24

    Abstract: 一种基于DDGPES的机器人控制方法,涉及一种机器人的控制方法,属于控制领域。本发明是为了解决现有的机器人控制方法中存在策略参数调整和均匀采样“无效”动作问题,以及Agent容易陷入局部最优的问题。本发明将机器人的控制决策系统记为智能体Agent;针对Agent,利用DQN网络进行决策,进而实现机器人进行控制。DQN网络应用中,结合DDES策略和GPES策略,GPES策略通过计算difference的值,根据Agent学习的过程动态的调整ε-greedy策略中的ε参数,以1-ε的概率执行argmaxa∈A Q(s,ai)动作,Agent以ε的概率进行探索。同时,采用DDES探索利用策略确定损失函数LD=L-Eπ′∈Π′[αD(π,π′)]。主要用于机器人的控制。

    基于实体超平面投影的知识表示学习模型

    公开(公告)号:CN110378489A

    公开(公告)日:2019-10-25

    申请号:CN201910695772.4

    申请日:2019-07-30

    Abstract: 基于实体超平面投影的知识表示学习模型,本发明涉及知识表示学习模型。本发明的目的是为了解决现有现有的知识表示学习模型大部分都只关注知识图谱的结构化信息,仅仅利用知识三元组来学习实体以及关系的表示,却忽略了实体的文本描述中可能蕴含的一些有用信息,导致处理任务时准确率低的问题。过程为:步骤一、将实体的描述文本处理成矩阵形式;步骤二、将步骤一得到的矩阵形式的文本输入到卷积神经网络中,得到实体描述文本的特征向量;步骤三、利用步骤二得到的特征向量建立EHP模型,得到实体以及关系的最终向量表示。本发明用于自然语言处理领域。

    用于小样本图像识别的样本抽取、扩充方法及存储介质

    公开(公告)号:CN113298184B

    公开(公告)日:2022-09-02

    申请号:CN202110687034.2

    申请日:2021-06-21

    Abstract: 用于小样本图像识别的样本抽取、扩充方法及存储介质,属于图像处理技术领域。为了解决针对于小样本图像识别过程中采用生成新样本的方式中存在的可能导致的生成错误样本的问题。本发明首先提出了一种基于特征重构的样本抽取方法来解决小样本数据集特征缺失的问题,从数据特征的角度实现了大样本数据集中抽取出一个典型小样本数据集。该方法将大样本数据的质心作为抽取度量的标准,使得抽取出的典型小样本数据集具有更全面的特征,效果更稳定。本发明还提出了基于变形信息的样本扩充方法,利用最优划分中同类异簇的数据间变形信息实现了将抽取出的典型小样本数据集扩充成新的大样本数据集。主要用于小样本图像识别的样本抽取及扩充。

Patent Agency Ranking