一种基于深度稀疏展开的单信道语音分离方法

    公开(公告)号:CN110060699A

    公开(公告)日:2019-07-26

    申请号:CN201910421602.7

    申请日:2019-05-21

    Abstract: 本发明提供的是一种基于深度稀疏展开的单信道语音分离方法。步骤一、将输入的混沌、纯净语音进行信号预处理,进行特征的提取;步骤二、结合稀疏NMF和深度展开对单信道语音语音分离问题进行模型建立;步骤三、将建立好的模型与提取的特征进行模型训练,得到基本系数;步骤四、再次输入混沌、纯净语音信号数据进行测试,经过傅里叶逆变换后,最终得到纯净语音。该方法将稀疏非负矩阵分离与深度展开方法相结合,对语音分离具有一定效果。

    基于上下文关联注意力机制和简化LSTM网络的入侵检测方法

    公开(公告)号:CN111865932B

    公开(公告)日:2022-04-12

    申请号:CN202010611789.X

    申请日:2020-06-30

    Abstract: 基于上下文关联注意力机制和简化LSTM网络的入侵检测方法,涉及网络安全技术领域,针对现有技术中入侵检测系统检测准确率低的问题,由于网络入侵流量数据具有一定的时序性和特征冗余性,因此本发明采用上下文关联注意力机制(CCAM,Contextual Connection Attention Mechanism)和简化LSTM网络(SLSTM,Simplify Long Short‑Term Memory Network)的入侵检测方法,不仅能够过滤或弱化检测数据的冗杂信息,增加数据的上下文联系,还能提取关键数据信息,提高训练速度,增强入侵行为检测的准确率。

    基于上下文关联注意力机制和简化LSTM网络的入侵检测方法

    公开(公告)号:CN111865932A

    公开(公告)日:2020-10-30

    申请号:CN202010611789.X

    申请日:2020-06-30

    Abstract: 基于上下文关联注意力机制和简化LSTM网络的入侵检测方法,涉及网络安全技术领域,针对现有技术中入侵检测系统检测准确率低的问题,由于网络入侵流量数据具有一定的时序性和特征冗余性,因此本发明采用上下文关联注意力机制(CCAM,Contextual Connection Attention Mechanism)和简化LSTM网络(SLSTM,Simplify Long Short-Term Memory Network)的入侵检测方法,不仅能够过滤或弱化检测数据的冗杂信息,增加数据的上下文联系,还能提取关键数据信息,提高训练速度,增强入侵行为检测的准确率。

Patent Agency Ranking