-
公开(公告)号:CN113838107B
公开(公告)日:2023-12-22
申请号:CN202111117036.4
申请日:2021-09-23
Applicant: 哈尔滨工程大学
IPC: G06T7/33 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/75 , G06V10/82 , G06N3/0464 , G06N3/044 , G06N3/0455 , G06N3/0475 , G06N3/094
Abstract: 本发明属于遥感图像配准技术领域,具体涉及一种基于稠密连接的异源图像自动配准方法。本发明先对SAR与光学图像进行转换,再使用结合注意力机制的卷积神经网络进行特征点的提取,接着将提取到的特征点进行特征编码并完成预匹配,通过使用高斯混合模型进行动态内联点选择,从而完成特征点的匹配,最后进行图像配准,得到最终结果。本发明通过使用循环生成式对抗网络,解决了异源图像因成像原理不同给配准带来的困难,同时使用改进后的稠密连接Densenet结构提取特征点,极大提高了精度,从而提升后续模型配准的性能。
-
公开(公告)号:CN113838107A
公开(公告)日:2021-12-24
申请号:CN202111117036.4
申请日:2021-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明属于遥感图像配准技术领域,具体涉及一种基于稠密连接的异源图像自动配准方法。本发明先对SAR与光学图像进行转换,再使用结合注意力机制的卷积神经网络进行特征点的提取,接着将提取到的特征点进行特征编码并完成预匹配,通过使用高斯混合模型进行动态内联点选择,从而完成特征点的匹配,最后进行图像配准,得到最终结果。本发明通过使用循环生成式对抗网络,解决了异源图像因成像原理不同给配准带来的困难,同时使用改进后的稠密连接Densenet结构提取特征点,极大提高了精度,从而提升后续模型配准的性能。
-
公开(公告)号:CN109871902B
公开(公告)日:2022-12-13
申请号:CN201910177075.X
申请日:2019-03-08
Applicant: 哈尔滨工程大学
IPC: G06V10/774 , G06V10/82 , G06N3/08
Abstract: 本发明属于雷达数据处理领域,具体涉及一种基于超分辨率对抗生成级联网络的SAR小样本识别方法。针对SAR目标图像分辨率低所导致的目标特征不明显,受环境影响较大,数据样本易混淆的问题,提出一个基于深度学习的超分辨率网络,对低分辨率的SAR的小样本图像进行放大。让分类网络能够提取到更多的特征。与传统超分辨率方法不同,利用GAN进行的图像超分辨率能够有效的提取到图像的特征,生成非过度平滑的逼真的高分辨率图像。针对SAR小样本图像具有的低分辨率,特征模糊,样本容易混淆的特点,针对SAR图像固有特点的GAN超分辨率模型。将实现一个4倍放大因子的超分模型,可以将原图像的像素数量放大到原来的16倍。这样可以提供给分类器更多的内容和特征。
-
公开(公告)号:CN110060699A
公开(公告)日:2019-07-26
申请号:CN201910421602.7
申请日:2019-05-21
Applicant: 哈尔滨工程大学
IPC: G10L21/0272 , G10L21/0208
Abstract: 本发明提供的是一种基于深度稀疏展开的单信道语音分离方法。步骤一、将输入的混沌、纯净语音进行信号预处理,进行特征的提取;步骤二、结合稀疏NMF和深度展开对单信道语音语音分离问题进行模型建立;步骤三、将建立好的模型与提取的特征进行模型训练,得到基本系数;步骤四、再次输入混沌、纯净语音信号数据进行测试,经过傅里叶逆变换后,最终得到纯净语音。该方法将稀疏非负矩阵分离与深度展开方法相结合,对语音分离具有一定效果。
-
公开(公告)号:CN111028277A
公开(公告)日:2020-04-17
申请号:CN201911256966.0
申请日:2019-12-10
Applicant: 中国电子科技集团公司第五十四研究所 , 哈尔滨工程大学
IPC: G06T7/33
Abstract: 本发明公开了遥感图像配准技术领域的基于伪孪生卷积神经网络的SAR和光学遥感图像配准方法,先对特征图像块的采集和匹配,再进行异常点去除和最终配准,采用了最大化正样本和难负样本之间的特征距离的策略,并且定义了新的损失函数对网络进行训练,伪孪生网络的两个分支通过卷积运算连接,得到两个输入图像块之间的相似性得分;本发明通过提出了伪孪生卷积神经网络体系结构,使得伪孪生网络的左分支和右分支能够分别输入不同大小的光学和SAR遥感图像,能够解决在极高分辨率下光学和SAR遥感图像中识别相应图像块的任务。
-
公开(公告)号:CN111028277B
公开(公告)日:2023-01-10
申请号:CN201911256966.0
申请日:2019-12-10
Applicant: 中国电子科技集团公司第五十四研究所 , 哈尔滨工程大学
IPC: G06T7/33
Abstract: 本发明公开了遥感图像配准技术领域的基于伪孪生卷积神经网络的SAR和光学遥感图像配准方法,先对特征图像块的采集和匹配,再进行异常点去除和最终配准,采用了最大化正样本和难负样本之间的特征距离的策略,并且定义了新的损失函数对网络进行训练,伪孪生网络的两个分支通过卷积运算连接,得到两个输入图像块之间的相似性得分;本发明通过提出了伪孪生卷积神经网络体系结构,使得伪孪生网络的左分支和右分支能够分别输入不同大小的光学和SAR遥感图像,能够解决在极高分辨率下光学和SAR遥感图像中识别相应图像块的任务。
-
公开(公告)号:CN110189761B
公开(公告)日:2021-03-30
申请号:CN201910421436.0
申请日:2019-05-21
Applicant: 哈尔滨工程大学
IPC: G10L21/0208
Abstract: 本发明提供的是一种基于贪婪深度字典学习的单信道语音去混响方法。步骤一、将输入的混沌、纯净语音进行信号预处理,进行特征的提取;步骤二、结合稀疏和贪婪深度字典学习对单信道语音去混响问题进行模型建立;步骤三、将建立好的模型与提取的特征进行模型训练,得到基本系数;步骤四、再次输入混沌、纯净语音信号数据进行测试,经过傅里叶逆变换后,最终得到纯净语音。本发明将传统的单信道语音去混响方法与深度字典学习相结合,提高单信道去混响的效果,使其具有良好的去混响效果,提高深度网络结构的可推导性。
-
公开(公告)号:CN110189761A
公开(公告)日:2019-08-30
申请号:CN201910421436.0
申请日:2019-05-21
Applicant: 哈尔滨工程大学
IPC: G10L21/0208
Abstract: 本发明提供的是一种基于贪婪深度字典学习的单信道语音去混响方法。步骤一、将输入的混沌、纯净语音进行信号预处理,进行特征的提取;步骤二、结合稀疏和贪婪深度字典学习对单信道语音去混响问题进行模型建立;步骤三、将建立好的模型与提取的特征进行模型训练,得到基本系数;步骤四、再次输入混沌、纯净语音信号数据进行测试,经过傅里叶逆变换后,最终得到纯净语音。本发明将传统的单信道语音去混响方法与深度字典学习相结合,提高单信道去混响的效果,使其具有良好的去混响效果,提高深度网络结构的可推导性。
-
公开(公告)号:CN110807372A
公开(公告)日:2020-02-18
申请号:CN201910976624.X
申请日:2019-10-15
Applicant: 哈尔滨工程大学
Abstract: 本发明属于深度学习遥感目标识别技术领域,具体涉及提高对目标的计算速度的一种基于深度特征重组的快速光学遥感目标识别方法。本方法包括如下步骤:分别建立自下而上50层ResNets以及101层ResNets网络架构作为构建特征金字塔网络的基础,对遥感图像进行初步特征提取,提取出4个不同的尺度的特征C2,C3,C4,C5;将得到的4个特征分别通过自上而下路径的卷积网络进行相互叠加得到新特征M2,M3,M4,M5用来消除不同层之间的混叠效果。将得到的M5特征图加倍得到新特征P5,特征P6是通过对P5进行3x3,然后对特征P6进行ReLU激活函数,再通过3x3,并且步长为2的卷积,就可以得到特征p7。本发明既具有单阶段测试模型的速度优势,又具有双阶段测试模型的计算准确度。
-
公开(公告)号:CN109886356A
公开(公告)日:2019-06-14
申请号:CN201910177081.5
申请日:2019-03-08
Applicant: 哈尔滨工程大学
Abstract: 一种基于三分支神经网络的目标追踪方法,属于计算机视觉技术领域。视觉目标跟踪属于视频分析,作为计算机视觉领域的一个重要分支,它的基本任务是根据给定的目标在初始帧的位置信息,预测目标在视频序列中的位置、区域以及运动轨迹。针对视觉目标追踪的精度低和速度慢,易受遮挡、背景混淆、尺寸变化、剧烈的表观变化、光照变化等影响。提出了一种基于三分支神经网络的目标追踪方法。与传统视觉目标追踪技术不同的是:利用三分支神经网络对目标进行追踪能够对目标有鲁棒性高的表示能力,可以应对目标表观的显著变化,对背景有更好的区分性,同时能有效地避免算法的漂移。在追踪速度也远远超过其他算法。
-
-
-
-
-
-
-
-
-