-
公开(公告)号:CN111471186B
公开(公告)日:2023-01-24
申请号:CN202010476633.5
申请日:2020-05-29
Applicant: 中国工程物理研究院化工材料研究所 , 哈尔滨工业大学无锡新材料研究院
Abstract: 本发明公开了一种高性能共聚液态氟橡胶、制备方法及应用,所述液态氟橡胶由端羧基氟橡胶(A)和端羟基氟橡胶(B)共聚组成BAB型共聚物,其中端羧基氟橡胶(A)和端羟基氟橡胶(B)的摩尔比为1:2,所述端羧基氟橡胶分子量为800~9000,所述端羟基氟橡胶分子量为800~9000,所述共聚液态氟橡胶分子量为1600~18000。本发明的有益之处在于可结合不同氟橡胶的性能优势,避免了不同种橡胶相容性差,共混固化效果不佳的问题,制备得到的端羟基氟橡胶具有耐高温,耐低温,耐介质性等诸多优良的性能。
-
公开(公告)号:CN115224438A
公开(公告)日:2022-10-21
申请号:CN202210900859.2
申请日:2022-07-28
Applicant: 哈尔滨工业大学无锡新材料研究院 , 中材锂膜有限公司
IPC: H01M50/403 , H01M50/411
Abstract: 本发明公开了一种复合涂覆锂离子电池聚乙烯隔膜的制备方法。以芳纶纳米纤维、聚多巴胺和勃姆石为涂覆主体,利用优异的热稳定性以及丰富的极性基团,改善聚乙烯隔膜热稳定性差、对电解质亲液性差的问题。同时采用PDA改性PE,可以大幅改善PE隔膜与涂覆层间表面能不匹配的问题。经热收缩率、表面润湿性、力学性能及电化学性能测试验证改性隔膜对物理性能和电化学性能的影响。
-
公开(公告)号:CN114889122A
公开(公告)日:2022-08-12
申请号:CN202210354050.4
申请日:2022-04-06
Applicant: 哈尔滨工业大学
IPC: B29C64/20 , B29C64/336 , B33Y30/00 , B33Y40/00
Abstract: 一种基于微液滴发生器阵列的3D打印装置,为了解决现有技术打印大幅面的工件,需要庞大的打印机及打印时间长的问题。本发明的激光器、安装板和打印平台由上至下水平设置,激光器安装在安装臂的底部,安装臂与立柱固定连接,安装板安装在转动机构的底部,转动机构与立柱铰接,立柱与工作箱体固定连接,打印平台安装在升降机构的升降杆上,升降机构安装在工作箱体的内部,微液滴发生器位于安装板与打印平台之间,安装板内部设置有输液孔,微液滴发生器通过输料管与输液孔连通,输液管的一端与输液孔连通,输液管的另一端与缓冲瓶连通,缓冲瓶通过管路与原料箱连通。本发明可同时打印多种材料组成的物体,多个打印头同时工作可大大缩短打印时间。
-
公开(公告)号:CN113105862B
公开(公告)日:2022-07-15
申请号:CN202110573190.6
申请日:2021-05-25
Applicant: 哈尔滨工业大学
IPC: C09J183/04 , C09J11/08 , C09J11/04 , C09J183/07 , C09J7/38 , C09J7/25 , C09J7/24
Abstract: 一种耐热型有机硅压敏胶粘剂制备方法,属于胶粘带制备技术领域。本方法将无机晶须经特定的硅烷偶联剂处理后加入到含有不饱和基团POSS和加成型有机硅压敏胶基胶中,一并固化制成压敏胶带。将添加物理填料和形成化学键综合利用无机晶须用硅烷偶联剂改性后,增强了它与压敏胶粘剂的相容性,结合化学键合的POSS基团提高了有机硅压敏胶在更高温度下的稳定性,得到耐高温压敏胶粘剂。本发明有如下优势:改善压敏胶胶粘剂在高温下的残胶问题、提高压敏胶胶粘剂在高温条件下的持粘能力,且所用的材料价格低廉,制备方法简单,有利于节约成本及降低生产难度。
-
公开(公告)号:CN114350107A
公开(公告)日:2022-04-15
申请号:CN202210058085.3
申请日:2022-01-19
Applicant: 哈尔滨工业大学无锡新材料研究院 , 无锡海特新材料研究院有限公司
Abstract: 本发明公开了一种快速成型的各向异性导热复合材料及其制备方法,其中的各向异性导热复合材料由如下质量份的原料制成:石墨填料50‑90份;碳纤维填料2‑20份;高分子聚合物基体2‑20份;界面改性剂1‑3份;有机溶剂1‑3份。本发明赋予材料优良的导热性能和机械性能,在降低成本的同时,保持了相对较高的导热性能且具有明显的各向异性,在电子设备散热和5G基站建设的散热难问题上提出了新的思路与解决方法。本发明获得的复合材料能够快速将热量散发到更大的面积,散热效果更好,响应更迅速。
-
公开(公告)号:CN109638360B
公开(公告)日:2022-03-08
申请号:CN201811331074.8
申请日:2018-11-09
Applicant: 哈尔滨工业大学无锡新材料研究院 , 无锡海特新材料研究院有限公司
IPC: H01M10/0585 , H01M10/0562 , H01M10/052 , H01M4/38 , H01M4/62
Abstract: 本发明公开了一种全固态锂硫电池的制备方法及制备模具。本发明的方法包括:步骤a,制备固态电解质:将Li2S、P2S5、纳米硅、LiF经过高能球磨,高压压片以及高温烧结的过程后制成硫化物玻璃陶瓷固态电解质;步骤b,制备正极材料:将S、活性物质、步骤a制得的固态电解质经过高温热处理以及多次高能球磨的过程后制成正极材料;步骤c,制备负极材料:将金属锂片经过表面处理后制成负极材料;步骤d,将制备好的正极材料、固态电解质、负极材料放入到全固态锂硫电池模具中,采用层压法制成全固态锂硫电池。本发明使用固态电解质代替电解液,使锂离子电池更安全,可以对锂枝晶具有很好的抑制作用,同时抑制穿梭效应以及活性物质的溶解。
-
公开(公告)号:CN113105862A
公开(公告)日:2021-07-13
申请号:CN202110573190.6
申请日:2021-05-25
Applicant: 哈尔滨工业大学
IPC: C09J183/04 , C09J11/08 , C09J11/04 , C09J183/07 , C09J7/38 , C09J7/25 , C09J7/24
Abstract: 一种耐热型有机硅压敏胶粘剂制备方法,属于胶粘带制备技术领域。本方法将无机晶须经特定的硅烷偶联剂处理后加入到含有不饱和基团POSS和加成型有机硅压敏胶基胶中,一并固化制成压敏胶带。将添加物理填料和形成化学键综合利用无机晶须用硅烷偶联剂改性后,增强了它与压敏胶粘剂的相容性,结合化学键合的POSS基团提高了有机硅压敏胶在更高温度下的稳定性,得到耐高温压敏胶粘剂。本发明有如下优势:改善压敏胶胶粘剂在高温下的残胶问题、提高压敏胶胶粘剂在高温条件下的持粘能力,且所用的材料价格低廉,制备方法简单,有利于节约成本及降低生产难度。
-
公开(公告)号:CN107778974B
公开(公告)日:2021-06-25
申请号:CN201711131215.7
申请日:2017-11-15
Applicant: 哈尔滨工业大学无锡新材料研究院 , 无锡海特新材料研究院有限公司
IPC: C09D11/102 , C09D11/101 , C09D11/03 , C09D11/037 , C09D11/033
Abstract: 本发明公开一种OMD油墨用连接料,其是以多代数的聚酰胺‑胺树枝状聚合物为固化剂的硅烷改性环氧树脂。一种OMD油墨,组分如下:硅烷改性环氧树脂20~30wt%,多代数的聚酰胺‑胺树枝状聚合物2~5wt%,引发剂1~2wt%,颜料5~15wt%,环氧稀释剂5~10wt%,消泡剂1~2wt%,流平剂1~2wt%,分散剂0.5~1wt%,填料0~5wt%,余量为溶剂。采用本发明连接料的OMD油墨具有潜伏固化的性能,固化前粘度低,易于印刷,固化成型后有足够的硬度和耐化性、耐磨性,能保证其有鲜艳的颜色和良好的印刷适应性,能赋予转印后的产品丰富的色彩、真实的触感和持久的使用性。
-
公开(公告)号:CN107254048B
公开(公告)日:2020-07-17
申请号:CN201710363974.X
申请日:2017-05-22
Applicant: 哈尔滨工业大学无锡新材料研究院 , 无锡海特新材料研究院有限公司
IPC: C08G77/24 , C09D183/08 , C09D5/20
Abstract: 本发明公开了一种氟硅类离型剂树脂、新型乳液型氟硅离型剂及其制备方法。本发明的新型乳液型氟硅离型剂的制备分为两步,第一步是合成氟硅类离型剂树脂,具体是将含氟单体、功能单体1、功能单体2在酸或碱的催化作用下经离子聚合得到氟硅离型剂树脂。第二步是在氟硅离型剂树脂中加入复合乳化体系,并采用相反转乳化法进行乳化,具体是将氟硅离型剂树脂、复合乳化体系混合均匀,滴加去离子水并采用高剪切速率分散机搅拌,最终制备得到氟硅离型剂乳液。
-
公开(公告)号:CN111269407A
公开(公告)日:2020-06-12
申请号:CN202010288039.3
申请日:2020-04-14
Applicant: 哈尔滨工业大学无锡新材料研究院 , 无锡海特新材料研究院有限公司
IPC: C08G63/685 , C08G63/85 , C08G69/44
Abstract: 本发明公开了一种可降解型酰胺杂化聚酯及其制备方法,其中的可降解型酰胺杂化聚酯由如下重量份数的组分制成:丁二酸二甲酯146份;含酰胺键硬链段的预聚物158-253份;1,3丙二醇30-76份;催化剂0.08-0.14份。本发明制备的可降解型酰胺杂化聚酯材料除具备可降解性能外,还具有较好的机械强度和热稳定性以及较高的结晶度。可广泛用于绿色、环保、可持续等塑料制品需求领域。
-
-
-
-
-
-
-
-
-