单点支撑小型化卫星激光通信收发共用天线装置

    公开(公告)号:CN105549188B

    公开(公告)日:2018-01-30

    申请号:CN201510974769.8

    申请日:2015-12-22

    Abstract: 单点支撑小型化卫星激光通信收发共用天线装置,涉及一种天线结构。解决了背式天线结构终端的体积大和重量过重影响卫星激光通信系统通信性能的问题。本发明所述的主镜固定在基板的上表面,基板和主镜的中心均开有通孔,主镜的中心通孔与基板中心通孔相对应;主镜呈向上凹的弧形,遮光筒的一端垂直固定在基板的上表面,遮光筒的中心轴与主镜的光轴重合,且遮光筒套设在主镜的外侧;圆筒形次镜单点支架的一端穿过主镜中心的通孔与基板垂直连接,圆筒形次镜单点支架的另一端与次镜座的下端固定连接,圆筒形次镜单点支架的顶端侧面有通光空隙,次镜固定在次镜座的下侧的镜座内,次镜与主镜相对设置。本发明适用于无线通信技术领域。

    单点支撑小型化卫星激光通信收发共用天线装置

    公开(公告)号:CN105549188A

    公开(公告)日:2016-05-04

    申请号:CN201510974769.8

    申请日:2015-12-22

    CPC classification number: G02B17/0816 G02B17/0856

    Abstract: 单点支撑小型化卫星激光通信收发共用天线装置,涉及一种天线结构。解决了背式天线结构终端的体积大和重量过重影响卫星激光通信系统通信性能的问题。本发明所述的主镜固定在基板的上表面,基板和主镜的中心均开有通孔,主镜的中心通孔与基板中心通孔相对应;主镜呈向上凹的弧形,遮光筒的一端垂直固定在基板的上表面,遮光筒的中心轴与主镜的光轴重合,且遮光筒套设在主镜的外侧;圆筒形次镜单点支架的一端穿过主镜中心的通孔与基板垂直连接,圆筒形次镜单点支架的另一端与次镜座的下端固定连接,圆筒形次镜单点支架的顶端侧面有通光空隙,次镜固定在次镜座的下侧的镜座内,次镜与主镜相对设置。本发明适用于无线通信技术领域。

    在轨空间光通信终端像差补偿方法

    公开(公告)号:CN103441798A

    公开(公告)日:2013-12-11

    申请号:CN201310381838.5

    申请日:2013-08-28

    Abstract: 在轨空间光通信终端像差补偿方法,涉及在轨空间光通信终端像差补偿方法。它为了解决现有的空间光通信终在轨运行期间产生新的像差导致通信链路的中断的问题。在地面测试模拟阶段对空间光通信终端中各种可能产生的像差及其对应的光斑质心定位的影响进行模拟测量,在轨修正阶段通过比较地面主控中心接收到的数据与地面测试模拟阶段存储的所有数据,选择与在轨的空间光通信终端数据相似的数据作为成像测试结果,根据该结果计算相应的像差修正参数,实现对空间光通信终端的在轨运行修正,本发明提高了终端角探测精度,达到了保证了空间光通信终在轨运行期间通信链路正常运行的目的。本发明适用于航空、航天和通信领域。

    基于地面测试的空间光通信终端的像差补偿方法

    公开(公告)号:CN103427904A

    公开(公告)日:2013-12-04

    申请号:CN201310381686.9

    申请日:2013-08-28

    Abstract: 基于地面测试的空间光通信终端的像差补偿方法,本发明涉及基于地面测试的空间光通信终端的像差补偿方法。它为了解决由于加工及装调工艺的限制,存在于空间光通信终端的像差对终端角探测精度的影响,对空间光通信产生影响的问题。该像差补偿方法通过二维微动平台、二维微动平台驱动器、主控计算机、空间光调制器驱动器、空间光调制器、第二分光棱镜、波前传感器、编码器、平行光管和半导体激光器,实现了对光斑的质心坐标的测量,并根据该测量结果对像差进行补偿,提高终端角探测精度,由于角探测精度是靠光斑质心定位精度决定的,从而保证了空间光通信过程中通信链路正常运行的目的。本发明适用于航空和通信等领域。

    1550nm波段光束跟踪通信一体化的光探测装置

    公开(公告)号:CN102104430B

    公开(公告)日:2013-10-09

    申请号:CN201010611263.8

    申请日:2010-12-29

    Abstract: 1550nm波段光束跟踪通信一体化的光探测装置,属于空间光通信技术领域。它解决了现有空间光通信系统结构复杂的问题。它的空间光通信系统的接收光束入射至主成像透镜,经主成像透镜聚焦后,入射到2×2透镜阵列,并在2×2透镜阵列上形成光斑,每个透镜上形成的光斑耦合入一个光纤头,每个光纤头将其耦合的光信号输入至一个APD探测器,每个APD探测器将其接收的光信号转换为电压信号输出给信号处理系统,信号处理系统对其同时接收的四个电压信号进行处理,获得空间光通信系统的接收光束光轴在俯仰轴及方位轴上的偏转角;所述四个光纤头的光纤长度相等。本发明用于跟踪空间光通信系统的光入射角度。

    卫星光通信终端光轴与终端基准面间夹角的测量方法

    公开(公告)号:CN102141386B

    公开(公告)日:2012-11-28

    申请号:CN201010611212.5

    申请日:2010-12-29

    Abstract: 卫星光通信终端光轴与终端基准面间夹角的测量方法,涉及卫星光通信终端光轴与终端基准面间夹角的测量方法,适用于卫星光通信终端光轴与终端基准面间夹角的测量;为了解决发射光束的精确瞄准,目前无此精度的测量方法问题。它通过如下步骤实现:步骤一,调整平面镜4使其光轴与卫星光通信终端3光轴1重合;步骤二,α1、β1即为卫星光通信终端3光轴1与自准直仪5光轴的夹角;步骤三,调整平行平晶6,使平行平晶6的光轴与平面镜4的光轴重合;步骤四,保证自准直仪5的光轴在测量终端基准面2时与测量卫星光通信终端3光轴1时是相同的;步骤五,可得卫星光通信终端3光轴1和终端基准面2反射光轴间的夹角为 步骤六,换算。

    基于变焦目镜的变视域高精度信号光入射角度探测系统及信号光入射角度探测方法

    公开(公告)号:CN102095404A

    公开(公告)日:2011-06-15

    申请号:CN201010611173.9

    申请日:2010-12-29

    Abstract: 基于变焦目镜的变视域高精度信号光入射角度探测系统及信号光入射角度探测方法,涉及一种视域变调高精度入射光角度探测系统及探测方法。它解决了现有探测系统在瞄准、捕获、跟踪过程中视域固定、精度固定的问题,既满足了系统在瞄准、捕获过程中大视域的要求,也满足了系统在跟踪过程中高探测精度的要求。其系统:望远物镜将信号光聚焦至变焦目镜,并经变焦目镜透射至精瞄镜,透射光经精瞄镜反射至成像透镜组,反射光经成像透镜组聚焦至CCD探测器的探测面。其方法:跟瞄控制系统调整变焦目镜的焦距为fc,实现对信号光的瞄准和捕获;调整焦距为fc/β,实现对入射光的跟踪;从而实现对信号光的入射角度的探测。本发明适用于对信号光光束入射角度的探测。

    基于热像仪的星地双向高速激光通信大气影响探测方法

    公开(公告)号:CN105657342B

    公开(公告)日:2019-02-19

    申请号:CN201510975498.8

    申请日:2015-12-22

    Abstract: 基于热像仪的星地双向高速激光通信大气影响探测方法,属于通信系统的大气层探测技术领域。本发明是为了解决传统的成像系统用于监测大气云层特性,只对可见光波段敏感,但对红外波段不敏感,使得在夜间对大气云层特性的判断可靠性低的问题。热像仪控制单元按照约定的数据包格式发送通讯指令给热像仪,控制热像仪执行通讯指令并进行当前大气云层图像采集;热像仪在接收到状态查询通讯指令时,按照约定的数据包格式向热像仪控制单元反馈当前采集的大气云层图像数据;热像仪采集的大气云层图像传输给图像处理单元进行视频压缩及图像处理,获得当前大气云层特性图像,实现对大气云层特性的探测。本发明用于大气云层特性的探测。

    光斑图像处理检测系统及采用该系统检测光斑灰度质心和现有灰度图像噪声去除效果的方法

    公开(公告)号:CN103353387B

    公开(公告)日:2015-08-19

    申请号:CN201310264097.2

    申请日:2013-06-28

    Abstract: 光斑图像处理检测系统及采用该系统检测光斑灰度质心和现有灰度图像噪声去除效果的方法,涉及光斑图像处理检测系统及采用该系统检测光斑灰度质心和现有灰度图像噪声去除效果的方法。光斑图像处理检测系统包括电源、CMOS图像传感器、整形透镜组件、平行光管、望远镜、二维微动单元、二维微动单元驱动器、半导体激光器、编码器和计算机,所述的二维微动单元表面粘贴平面镜,本发明采用自由空间光通信光斑图像处理检测系统提供了可控的硬件仿真环境,达到了获得现有光斑灰度图像噪声去除方法的精度的方法和获得待检测光斑灰度质心方法的精度的方法的结果更准确和更真实的目的,能直观的反应待检测方法的效果。本发明涉及光斑图像处理领域。

    光斑图像处理检测系统及采用该系统检测光斑灰度质心和现有灰度图像噪声去除效果的方法

    公开(公告)号:CN103353387A

    公开(公告)日:2013-10-16

    申请号:CN201310264097.2

    申请日:2013-06-28

    Abstract: 光斑图像处理检测系统及采用该系统检测光斑灰度质心和现有灰度图像噪声去除效果的方法,涉及光斑图像处理检测系统及采用该系统检测光斑灰度质心和现有灰度图像噪声去除效果的方法。光斑图像处理检测系统包括电源、CMOS图像传感器、整形透镜组件、平行光管、望远镜、二维微动单元、二维微动单元驱动器、半导体激光器、编码器和计算机,所述的二维微动单元表面粘贴平面镜,本发明采用自由空间光通信光斑图像处理检测系统提供了可控的硬件仿真环境,达到了获得现有光斑灰度图像噪声去除方法的精度的方法和获得待检测光斑灰度质心方法的精度的方法的结果更准确和更真实的目的,能直观的反应待检测方法的效果。本发明涉及光斑图像处理领域。

Patent Agency Ranking