-
公开(公告)号:CN115976374A
公开(公告)日:2023-04-18
申请号:CN202211563723.3
申请日:2022-12-07
申请人: 吉林大学
摘要: 本发明提供了一种低淬火敏感性高强塑Al‑Si合金及其制备方法,属于金属材料领域。所述合金按照质量百分比计,由如下组分组成:Si:10.0~11.5wt.%,Cu:1.1~1.6wt.%,Mg:0.44~0.60wt.%,Mn:0.18~0.23wt.%,B:0.023~0.045wt.%,Sb:0.15~0.25wt.%,Sn:0.05~0.20wt.%,不可避免的杂质含量≤0.2wt.%,余量为Al。制备方法包括:将铝锭、Al‑20Si、Al‑10Mn和Al‑50Cu合金完全熔化后,依次加入Al‑3B、Mg、Sn和Sb,浇铸成形获得合金铸锭;将合金进行单级固溶处理,采用水淬或风冷进行淬火处理;再进行时效处理。通过调控合金元素种类、配比及制备工艺,开发出成本低、淬火敏感性低、强塑性较好的铝合金,合金屈服强度≥320MPa,抗拉强度≥403MPa,延伸率≥6%。
-
公开(公告)号:CN114855042B
公开(公告)日:2022-11-29
申请号:CN202210617162.4
申请日:2022-06-01
申请人: 吉林大学
摘要: 本发明提供了一种高强塑性Mg‑Al‑Sn合金及其制备方法,属于金属材料领域,所述合金由如下成分组成;按照质量百分比计:Al:3‑12%,Sn:0.5‑4%,Ca:0.1‑3%,不可避免的杂质≤0.02%,余量为镁。本发明通过熔化、精炼、亚快速凝固以及搅拌摩擦大变形等工艺获得了细化和球化CaMgSn、MgAlCa和Mg17Al12等第二相,同时获得了均匀细小晶粒,获得的镁合金具有高强塑性,其中室温延伸率≥30%。本发明解决了Mg‑Al‑Sn镁合金中CaMgSn、MgAlCa等粗大第二相难以细化的难题,省去了高温长时间的固溶处理,绿色节能,制备工艺简单、可靠,为镁合金的产业化生产提供了有效路径。
-
公开(公告)号:CN114574741B
公开(公告)日:2022-11-18
申请号:CN202210221685.7
申请日:2022-03-07
申请人: 吉林大学
摘要: 本发明属于金属材料技术领域,公开了一种优良耐应力腐蚀性能镁合金及其制备方法。所述的镁合金按质量百分比计,由如下成分组成:锌0.05‑2.0%、钙0.05‑0.5%、铋0.001‑0.25%、添加元素、不可避免杂质≤0.02%,余量为镁;所述的添加元素为铒、锡、锑、锰中的一种或任意组合,其中:铒0.001‑0.2%,锡0.001‑0.2%,锑0.001‑0.2%,锰0.05‑0.3%。制备方法包括:合金熔炼浇注、均匀化热处理、挤压、固溶处理和人工时效等五个步骤。本发明通过合金组分和工艺的协同作用,有效调控镁合金中的第二相尺寸、分布以及细化晶粒,降低电偶腐蚀引起的阳极溶解开裂和氢脆导致的机械开裂;此外,合金组分之间的相互作用提高了腐蚀产物层的稳定性和致密性,抑制腐蚀产物层诱导开裂,从而提高合金的耐应力腐蚀性能。
-
公开(公告)号:CN114540683B
公开(公告)日:2022-11-15
申请号:CN202210189761.0
申请日:2022-02-28
申请人: 吉林大学
摘要: 本发明属于金属材料技术领域,公开了一种微合金化的耐腐蚀低成本镁合金及其制备方法;所述镁合金成分质量百分比为:铝:0.55‑1.2%,锰:0.5‑0.65%,锌:0‑0.4%,钙:0.01‑0.03%,其余为镁、添加元素和不可避免的杂质;所述的添加元素为钐、镧中的一种或两者组合,加入量按质量百分比计为:钐:0.01‑0.2%,镧:0.01‑0.2%。制备方法包括:在低含量合金成分设计基础上,添加微量稀土元素实现微合金化,通过合金熔炼、浇注、短时保温处理及快速挤压后,通过元素间的相互作用以及生产工艺的协同作用,调控镁合金中第二相的种类、尺寸、分布以及数量,以此降低第二相与镁基体的电势差,减小微电偶腐蚀的作用,显著提高镁合金的耐蚀性。
-
公开(公告)号:CN115323225A
公开(公告)日:2022-11-11
申请号:CN202210986610.8
申请日:2022-08-17
申请人: 吉林大学
摘要: 本发明具体提供一种耐蚀高强韧铸造铝硅合金及其制备方法,属于金属材料领域。所述耐蚀高强韧铸造铝硅合金按照质量百分比计,由如下成分组成:Si:4~8wt.%,Mg:0.2~0.6wt.%,B:0.01~0.05wt.%,Sb:0.03~0.1wt.%,不可避免的杂质≤0.02wt.%,余量为Al。制备方法包括:将商业纯铝、Al‑20Si中间合金、商业纯镁、Al‑3B中间合金和商业纯锑熔化;再经水冷铜模浇注成型、双级固溶以及双级时效热处理工艺获得耐蚀高强韧铸造铝硅合金,本发明调控了合金的微观组织形貌,明显提高了合金的耐腐蚀性能和强韧性。
-
公开(公告)号:CN114875287A
公开(公告)日:2022-08-09
申请号:CN202210545017.X
申请日:2022-05-19
申请人: 吉林大学
摘要: 本发明提供了一种高线径均匀度耐氧化镁合金细丝及其制备方法;所述镁合金成分质量百分比为:铝:1.0‑6.0%,锌:0.1‑1.0%,锡:0.05‑0.18%,锰:0.05‑0.6%,钐:0.02‑0.18%,钙:0.02‑0.18%,添加元素和不可避免的杂质;所述的添加元素为钇、铈、钪中的一种或任意组合,加入量按百分比计为:钇:0‑0.3%,铈:0‑0.25%,钪:0‑0.35%;不可避免的杂质总和≤0.05%;余量为镁。其制备方法包括:在合金经熔炼、浇注、均质化热处理、挤压、连续拉丝后,获得高线径均匀度耐氧化镁合金焊丝,焊丝力学性能:屈服强度≥150MPa、抗拉强度≥240MPa、延伸率≥15%。本发明制备工艺高效简单,细丝耐氧化、线径均匀、表面光洁度高且力学性能优异,熔丝过程飞溅少,适合机器人自动焊接、增材制造等领域的工业化生产。
-
公开(公告)号:CN113981259B
公开(公告)日:2022-06-28
申请号:CN202111283003.7
申请日:2021-11-01
申请人: 吉林大学
摘要: 本发明公开了一种新型镁‑铝‑锡‑钙合金及其制备方法,所述的镁合金按质量百分比计由如下成分组成:铝为3‑6%,锡为0.5‑3%,钙为0.1‑1%,锰为0‑0.5%,稀土为0‑0.1%,不可避免的杂质含量≤0.02%,余量为镁。所述的制备方法包括以下步骤:亚快速凝固制备铸态板坯;变形辅助第一梯度固溶制备固溶态板坯;变形辅助第二梯度固溶制备固溶态板坯;变形辅助第三梯度固溶制备新型镁‑铝‑锡‑钙合金。本发明有效细化并球化了合金凝固过程中形成的高熔点共晶相,拓宽了合金成分设计范围。此外,本发明通过增加溶质原子回溶的驱动力,形成过饱和固溶体,实现了低温短时固溶。本发明获得的镁合金板坯可应用在金属材料变形加工领域,如制备低成本高强塑性镁合金板材。
-
公开(公告)号:CN113403510B
公开(公告)日:2022-06-28
申请号:CN202110844950.2
申请日:2021-07-26
申请人: 吉林大学
摘要: 本发明提供一种高强韧性铸造铝硅合金及其制备方法,属于金属材料领域。所述高强韧性铸造铝硅合金按照质量百分比计,由如下成分组成:Si:8.0~9.0wt.%,Cu:3.0~3.5wt.%,Mg:0.30~0.40wt.%,Mn:0.10~0.20wt.%,B:0.05~0.08wt.%,Sb:0.05~0.10wt.%,不可避免的杂质含量≤0.2wt.%,余量为Al;制备方法包括:铝硅合金熔炼、孕育变质、精炼除气除杂、铸造和T6热处理;所述的T6热处理工艺为双级固溶和双级热时效,使得铸造铝硅合金具有较高的室温强韧性;本发明的铸造铝硅合金具有高强度和较高的合金延伸率,使合金更加适合于制备各种受力结构件,在汽车、航空航天等领域结构件轻量化方面具有极大应用价值。
-
公开(公告)号:CN113549790B
公开(公告)日:2022-05-31
申请号:CN202110845001.6
申请日:2021-07-26
申请人: 吉林大学
摘要: 本发明公开了一种高性能Al‑Ti‑V‑B合金细化剂及其制备方法和应用,Al‑Ti‑V‑B合金的化学元素组成按质量百分比为:Ti:0.5~3.0 wt.%,V:1.0~4.0 wt.%,B:1.0‑6.0 wt.%,不可避免的杂质小于0.1%,余量Al,Al‑Ti‑V‑B合金组成由Al基体以及尺寸为1~100μm的TiAl3、VAl3、VB2、TB2和AlB2物相颗粒构成。采用熔化、加热、共混、搅拌以及浇注等方法制备的Al‑Ti‑V‑B细化剂可使铸造铝硅合金中α‑Al的晶粒尺寸细化到160μm以下;因此本发明的Al‑Ti‑V‑B合金对铸造铝硅合金中α‑Al晶粒的细化效果显著,制备方法简便,成本较低,适于大规模工业化生产。
-
公开(公告)号:CN113981259A
公开(公告)日:2022-01-28
申请号:CN202111283003.7
申请日:2021-11-01
申请人: 吉林大学
摘要: 本发明公开了一种新型镁‑铝‑锡‑钙合金及其制备方法,所述的镁合金按质量百分比计由如下成分组成:铝为3‑6%,锡为0.5‑3%,钙为0.1‑1%,锰为0‑0.5%,稀土为0‑0.1%,不可避免的杂质含量≤0.02%,余量为镁。所述的制备方法包括以下步骤:亚快速凝固制备铸态板坯;变形辅助第一梯度固溶制备固溶态板坯;变形辅助第二梯度固溶制备固溶态板坯;变形辅助第三梯度固溶制备新型镁‑铝‑锡‑钙合金。本发明有效细化并球化了合金凝固过程中形成的高熔点共晶相,拓宽了合金成分设计范围。此外,本发明通过增加溶质原子回溶的驱动力,形成过饱和固溶体,实现了低温短时固溶。本发明获得的镁合金板坯可应用在金属材料变形加工领域,如制备低成本高强塑性镁合金板材。
-
-
-
-
-
-
-
-
-