基于kriging近似模型的磁悬浮飞轮电机多目标优化设计方法

    公开(公告)号:CN113177341B

    公开(公告)日:2023-08-22

    申请号:CN202110563334.X

    申请日:2021-05-21

    Abstract: 本发明公开了一种基于kriging近似模型的磁悬浮飞轮电机多目标优化设计方法,本方法以磁悬浮飞轮电机的电流刚度和位移刚度为优化目标,对电机的悬浮绕组线圈匝数、悬浮齿宽、转子齿高、轴向长度进行优化,从而有效提高了飞轮电池在车载复杂工况下悬浮支承刚度。此外,本发明所提出的优化设计方法以Kriging近似模型替代电机的有限元模型,以减少电机优化迭代计算过程中的计算成本,提高了优化效率;并采用一种改进的多目标果蝇算法对寻优,在原始的果蝇算法中对搜索空间及味道判定值进行改进,引入快速非支配排序及拥挤距离排序方法解决多目标优化问题,有效提高了算法的全局搜索能力和收敛速度。

    基于数据驱动和机理模型融合的车载飞轮动态建模方法

    公开(公告)号:CN113761660A

    公开(公告)日:2021-12-07

    申请号:CN202111058760.4

    申请日:2021-09-10

    Abstract: 本发明公开了一种基于数据驱动和机理模型融合的车载飞轮动态建模方法,方法包括在线模型中,通过磁悬浮飞轮转子系统运动方程,计算磁悬浮飞轮转子系统输入和输出之间的传递函数矩阵,根据传递函数矩阵计算频响传递函数矩阵和留数矩阵,在频域内计算留数矩阵与无阻尼固有频率、模态阻尼比之间的关系,以及留数矩阵与模态振型矩阵之间的关系,通过最小二乘复频域方法求解频响传递函数矩阵与模态振型矩阵之间的关系,进而识别模态参数;在离线模型中,构建磁悬浮飞轮转子系统的机理模型,基于数据驱动和机理模型融合,构建极限学习机模型,所述极限学习机模型用于识别道路工况,提高了输出道路工况模型的准确性。

    轴向永磁磁悬浮飞轮电机动态等效磁网络模型建立方法

    公开(公告)号:CN111931406A

    公开(公告)日:2020-11-13

    申请号:CN202010793161.6

    申请日:2020-08-07

    Abstract: 本发明公开了一种轴向永磁磁悬浮飞轮电机动态等效磁网络模型建立方法,包括:建立三维有限元模型,获取轴向永磁磁悬浮飞轮电机的气隙磁力线分布,并划分为三种等效磁通管的气隙磁路,基于“磁阻最小原理”确定临界角;获取气隙磁路的等效磁网络模型,确定转子转动的周期,并将一周期过程划分为7个区域,获取各区域内转子的运动范围;计算电机A相和B相的气隙磁导;将径向磁路和轴向磁路的悬浮铁心、永磁体与转子轭部各等效成一个磁阻,结合气隙磁导获取电机的动态等效磁网络模型。本发明将不断改变的气隙磁导与不变的永磁体、悬浮极和转子轭部分磁导分别计算,将轴向永磁磁悬浮飞轮电机的三维磁场化简为动态磁网络,提高模型精度和计算速度。

Patent Agency Ranking