一种基于生成对抗的目标检测器学习方法

    公开(公告)号:CN114067195B

    公开(公告)日:2024-08-13

    申请号:CN202111221228.X

    申请日:2021-10-20

    Abstract: 本发明公开了一种基于生成对抗的目标检测器学习方法,属于人工智能技术领域,促使样本生成器生成更加真实的生成图像,使得生成图像提高网络的检测性能,还能够提高网络的训练效率。方法包括:构建循环生成对抗学习模型;所述循环生成对抗学习模型包括两组样本生成器;构建联合网络模型;所述联合网络模型在所述循环生成对抗学习模型中集成有目标检测器;所述目标检测器与所述两组样本生成器相连,并将两组真实图像,以及由所述两组样本生成器生成的两组生成图像作为输入,在梯度反向传播过程中将梯度值输出至所述两组样本生成器;对所述联合网络模型进行训练,并将由所述目标检测器输出的梯度值反向传播至对应的样本生成器中,直至所述联合网络模型收敛。

    一种火箭着陆轨迹规划方法及装置

    公开(公告)号:CN112256045A

    公开(公告)日:2021-01-22

    申请号:CN202010390794.2

    申请日:2020-05-11

    Abstract: 一种火箭着陆轨迹规划方法及装置,包括:根据火箭发动机推力调节能力,计算着陆段采用最大推力和最小推力两种状态完成着陆的最大纵向速度‑高度剖面和最小纵向速度‑高度剖面;计算不同高度下所述最大纵向速度‑高度剖面和最小纵向速度‑高度剖面对应的速度平均值,进而得到可行域最大的纵向速度‑高度标准剖面;根据实际飞行高度变化趋势以及所述纵向速度‑高度标准剖面,最小化飞行过程期望纵向速度与实际纵向速度的偏差,构建可行域最大化的优化目标函数;根据所述优化目标函数规划火箭着陆轨迹。采用本申请中的方案,提升了在线规划的着陆轨迹对偏差的适应能力,有利于火箭安全着陆。

Patent Agency Ranking