-
公开(公告)号:CN111523564B
公开(公告)日:2023-05-12
申请号:CN202010213403.X
申请日:2020-03-24
Applicant: 北京航天自动控制研究所
IPC: G06V10/774 , G06V10/20 , G06V20/13 , G06N20/00
Abstract: 本发明涉及一种用于深度学习训练的SAR时敏目标样本增广方法,属于图像处理技术和深度学习领域;包括如下步骤:步骤一、对目标所在区域拍摄分辨率为a米的异源SAR图集,转换成分辨率为b米的异源SAR图集;步骤二、找到全部目标,并将每个目标制作成SAR时敏目标切片,获得切片集;步骤三、从异源SAR图集中各图片截取背景图像,获得背景图像集;步骤四、对切片集中各切片进行优化处理;步骤五、建立时敏目标的学习样本集;步骤六、旋转时敏目标的学习样本,获得不同角度下的学习样本;本发明解决了因样本数量较少以及未考虑深度学习网络特点而导致深度学习训练效果不好的问题。
-
公开(公告)号:CN111414844A
公开(公告)日:2020-07-14
申请号:CN202010188543.6
申请日:2020-03-17
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种基于卷积循环神经网络的集装箱箱号识别方法,所述方法包括如下步骤:步骤1:采集集装箱样本图像,根据集装箱样本图像构建循环卷积神经网络模型,对循环卷积神经网络模型训练后得到分类器;步骤2:计算图像透视变换矩阵;步骤3:利用步骤2得到的图像透视变换矩阵对待检测集装箱图像进行透视变换得到视变换后的图像;步骤4:使用步骤1的分类器对透视变换后的图像进行字符识别得到字符识别结果;步骤5:利用集装箱箱号规则对字符识别结果进行核对校验,输出最终的箱号检测结果。本发明对神经网络结构和参数进行优化,具有更高的识别率和可靠性;对图像进行透视变换,提高不同角度安装摄像头应用该方法的鲁棒性。
-
公开(公告)号:CN109410175B
公开(公告)日:2020-07-14
申请号:CN201811123271.0
申请日:2018-09-26
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Inventor: 王浩 , 郑文娟 , 孙芃 , 张立家 , 高琪 , 刘跃成 , 韦海萍 , 郝梦茜 , 张伯川 , 张辉 , 周斌 , 靳松直 , 张聪 , 郑智辉 , 李少军 , 高仕博 , 胡瑞光 , 蔡伟 , 崔广涛 , 丛龙剑 , 刘燕欣 , 肖利平 , 唐波
Abstract: 一种基于多子区图像匹配的SAR雷达成像质量快速自动评价方法,首先人工制备带有特殊几何形状信标的SAR基准图像,通过雷达回波电磁仿真得到基准图像的基准雷达回波信号,完成雷达测试基准数据制备。在SAR雷达成像质量测试中,将基准雷达回波信号注入SAR雷达,由被测试雷达成像生成SAR实时图。随后使用SAR实时图和SAR基准图像进行多子区图像匹配,得到信标在SAR实时图中的精确位置。通过信标在SAR图像中几何位置和形状的变化,完成SAR雷达成像质量的量化评价。本发明提出的基于多子区图像匹配的SAR雷达成像质量快速自动评价方法大大提高了SAR雷达单机测试的自动化程度,在提高判读精度的同时降低了人力以及时间成本。
-
公开(公告)号:CN111401210A
公开(公告)日:2020-07-10
申请号:CN202010167033.0
申请日:2020-03-11
Applicant: 北京航天自动控制研究所
Inventor: 郝梦茜 , 张辉 , 周斌 , 靳松直 , 丛龙剑 , 刘严羊硕 , 郑文娟 , 韦海萍 , 王浩 , 张伯川 , 王亚辉 , 张聪 , 刘燕欣 , 高琪 , 肖利平 , 倪少波 , 杨柏胜
Abstract: 一种基于模板框增广的提高小目标检测稳定性的方法,步骤一:遍历全部训练样本的标注信息,提取标注信息中的目标尺寸;步骤二:计算目标尺寸参考最小值和目标尺寸参考最大值;步骤三:根据目标尺寸参考最小值、目标尺寸参考最大值、训练图像原始尺寸以及模型输出的特征层个数,计算各层关注目标的归一化尺寸;步骤四:根据各层关注目标归一化尺寸以及各特征层尺寸,计算各特征层模板框期望间距;步骤五:根据各特征层模板框期望间距,确定各特征层模板框个数与模板框中心点位置,进行模板框增广;步骤六:对完成模板框增广的卷积神经网络进行训练,得到对小目标检测的卷积神经网络模型。本发明降低算法对小目标位置的敏感度,提高小目标检测的稳定性。
-
公开(公告)号:CN109410175A
公开(公告)日:2019-03-01
申请号:CN201811123271.0
申请日:2018-09-26
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Inventor: 王浩 , 郑文娟 , 孙芃 , 张立家 , 高琪 , 刘跃成 , 韦海萍 , 郝梦茜 , 张伯川 , 张辉 , 周斌 , 靳松直 , 张聪 , 郑智辉 , 李少军 , 高仕博 , 胡瑞光 , 蔡伟 , 崔广涛 , 丛龙剑 , 刘燕欣 , 肖利平 , 唐波
Abstract: 一种基于多子区图像匹配的SAR雷达成像质量快速自动评价方法,首先人工制备带有特殊几何形状信标的SAR基准图像,通过雷达回波电磁仿真得到基准图像的基准雷达回波信号,完成雷达测试基准数据制备。在SAR雷达成像质量测试中,将基准雷达回波信号注入SAR雷达,由被测试雷达成像生成SAR实时图。随后使用SAR实时图和SAR基准图像进行多子区图像匹配,得到信标在SAR实时图中的精确位置。通过信标在SAR图像中几何位置和形状的变化,完成SAR雷达成像质量的量化评价。本发明提出的基于多子区图像匹配的SAR雷达成像质量快速自动评价方法大大提高了SAR雷达单机测试的自动化程度,在提高判读精度的同时降低了人力以及时间成本。
-
公开(公告)号:CN114066979B
公开(公告)日:2025-03-14
申请号:CN202111186916.7
申请日:2021-10-12
Applicant: 北京航天自动控制研究所
IPC: G06T7/73 , G06T3/4046 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种目标样本标注生成方法,属于深度学习技术领域,解决多个需求不同图片大小的目标样本的神经网络中复用的问题。方法包括:根据预设重叠比例、预切割小图尺寸及预设外扩比例对大图进行切割;对切割得到的小图中的目标样本进行标注,得到标注点在各小图上的相对坐标;根据相对坐标对应小图相对于大图的切割位置、在各小图上的相对坐标、所述预设重叠比例、所述预切割小图尺寸及所述预设外扩比例,确定各标注点在所述大图上的绝对坐标,得到包含有标注点绝对坐标的大图。
-
公开(公告)号:CN111401210B
公开(公告)日:2023-08-04
申请号:CN202010167033.0
申请日:2020-03-11
Applicant: 北京航天自动控制研究所
Inventor: 郝梦茜 , 张辉 , 周斌 , 靳松直 , 丛龙剑 , 刘严羊硕 , 郑文娟 , 韦海萍 , 王浩 , 张伯川 , 王亚辉 , 张聪 , 刘燕欣 , 高琪 , 肖利平 , 倪少波 , 杨柏胜
IPC: G06V20/10 , G06V10/774 , G06V10/82 , G06N3/0464 , G06T7/62
Abstract: 一种基于模板框增广的提高小目标检测稳定性的方法,步骤一:遍历全部训练样本的标注信息,提取标注信息中的目标尺寸;步骤二:计算目标尺寸参考最小值和目标尺寸参考最大值;步骤三:根据目标尺寸参考最小值、目标尺寸参考最大值、训练图像原始尺寸以及模型输出的特征层个数,计算各层关注目标的归一化尺寸;步骤四:根据各层关注目标归一化尺寸以及各特征层尺寸,计算各特征层模板框期望间距;步骤五:根据各特征层模板框期望间距,确定各特征层模板框个数与模板框中心点位置,进行模板框增广;步骤六:对完成模板框增广的卷积神经网络进行训练,得到对小目标检测的卷积神经网络模型。本发明降低算法对小目标位置的敏感度,提高小目标检测的稳定性。
-
公开(公告)号:CN114066979A
公开(公告)日:2022-02-18
申请号:CN202111186916.7
申请日:2021-10-12
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种目标样本标注生成方法,属于深度学习技术领域,解决多个需求不同图片大小的目标样本的神经网络中复用的问题。方法包括:根据预设重叠比例、预切割小图尺寸及预设外扩比例对大图进行切割;对切割得到的小图中的目标样本进行标注,得到标注点在各小图上的相对坐标;根据相对坐标对应小图相对于大图的切割位置、在各小图上的相对坐标、所述预设重叠比例、所述预切割小图尺寸及所述预设外扩比例,确定各标注点在所述大图上的绝对坐标,得到包含有标注点绝对坐标的大图。
-
公开(公告)号:CN106986272B
公开(公告)日:2018-05-22
申请号:CN201710104528.7
申请日:2017-02-24
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种基于机器视觉跟踪的集装箱货柜车防吊起系统,包括轮胎吊、摄像头、货柜车、集装箱、视频报警机、中控室控制设备,摄像头安装于所述轮胎吊底部支架,高度与所述货柜车的车架平齐,摄像头的视场垂直于货柜车行驶方向;摄像头向视频报警机输入跟踪获得的视频图像,视频报警机采用基于快速傅立叶变化在线学习的跟踪算法对获得的视频图像进行处理,当判定货柜车被吊起时,向中控室控制设备发出报警信号。该系统能够自动检测集装箱与货柜车是否分离,从而避免人为失误将集装箱货柜车误吊起,实现对箱区堆场作业的安全预控。
-
公开(公告)号:CN106986272A
公开(公告)日:2017-07-28
申请号:CN201710104528.7
申请日:2017-02-24
Applicant: 北京航天自动控制研究所
CPC classification number: B66C13/48 , B66C13/16 , B66C15/065 , B66C2700/084 , G06K9/00724 , G06K9/3233
Abstract: 本发明公开了一种基于机器视觉跟踪的集装箱货柜车防吊起系统,包括轮胎吊、摄像头、货柜车、集装箱、视频报警机、中控室控制设备,摄像头安装于所述轮胎吊底部支架,高度与所述货柜车的车架平齐,摄像头的视场垂直于货柜车行驶方向;摄像头向视频报警机输入跟踪获得的视频图像,视频报警机采用基于快速傅立叶变化在线学习的跟踪算法对获得的视频图像进行处理,当判定货柜车被吊起时,向中控室控制设备发出报警信号。该系统能够自动检测集装箱与货柜车是否分离,从而避免人为失误将集装箱货柜车误吊起,实现对箱区堆场作业的安全预控。
-
-
-
-
-
-
-
-
-