-
公开(公告)号:CN114067195A
公开(公告)日:2022-02-18
申请号:CN202111221228.X
申请日:2021-10-20
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种基于生成对抗的目标检测器学习方法,属于人工智能技术领域,促使样本生成器生成更加真实的生成图像,使得生成图像提高网络的检测性能,还能够提高网络的训练效率。方法包括:构建循环生成对抗学习模型;所述循环生成对抗学习模型包括两组样本生成器;构建联合网络模型;所述联合网络模型在所述循环生成对抗学习模型中集成有目标检测器;所述目标检测器与所述两组样本生成器相连,并将两组真实图像,以及由所述两组样本生成器生成的两组生成图像作为输入,在梯度反向传播过程中将梯度值输出至所述两组样本生成器;对所述联合网络模型进行训练,并将由所述目标检测器输出的梯度值反向传播至对应的样本生成器中,直至所述联合网络模型收敛。
-
公开(公告)号:CN111414844A
公开(公告)日:2020-07-14
申请号:CN202010188543.6
申请日:2020-03-17
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种基于卷积循环神经网络的集装箱箱号识别方法,所述方法包括如下步骤:步骤1:采集集装箱样本图像,根据集装箱样本图像构建循环卷积神经网络模型,对循环卷积神经网络模型训练后得到分类器;步骤2:计算图像透视变换矩阵;步骤3:利用步骤2得到的图像透视变换矩阵对待检测集装箱图像进行透视变换得到视变换后的图像;步骤4:使用步骤1的分类器对透视变换后的图像进行字符识别得到字符识别结果;步骤5:利用集装箱箱号规则对字符识别结果进行核对校验,输出最终的箱号检测结果。本发明对神经网络结构和参数进行优化,具有更高的识别率和可靠性;对图像进行透视变换,提高不同角度安装摄像头应用该方法的鲁棒性。
-
公开(公告)号:CN111401210A
公开(公告)日:2020-07-10
申请号:CN202010167033.0
申请日:2020-03-11
Applicant: 北京航天自动控制研究所
Inventor: 郝梦茜 , 张辉 , 周斌 , 靳松直 , 丛龙剑 , 刘严羊硕 , 郑文娟 , 韦海萍 , 王浩 , 张伯川 , 王亚辉 , 张聪 , 刘燕欣 , 高琪 , 肖利平 , 倪少波 , 杨柏胜
Abstract: 一种基于模板框增广的提高小目标检测稳定性的方法,步骤一:遍历全部训练样本的标注信息,提取标注信息中的目标尺寸;步骤二:计算目标尺寸参考最小值和目标尺寸参考最大值;步骤三:根据目标尺寸参考最小值、目标尺寸参考最大值、训练图像原始尺寸以及模型输出的特征层个数,计算各层关注目标的归一化尺寸;步骤四:根据各层关注目标归一化尺寸以及各特征层尺寸,计算各特征层模板框期望间距;步骤五:根据各特征层模板框期望间距,确定各特征层模板框个数与模板框中心点位置,进行模板框增广;步骤六:对完成模板框增广的卷积神经网络进行训练,得到对小目标检测的卷积神经网络模型。本发明降低算法对小目标位置的敏感度,提高小目标检测的稳定性。
-
公开(公告)号:CN111414844B
公开(公告)日:2023-08-29
申请号:CN202010188543.6
申请日:2020-03-17
Applicant: 北京航天自动控制研究所
IPC: G06V20/62 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0442 , G06N3/047 , G06N3/08
Abstract: 本发明公开了一种基于卷积循环神经网络的集装箱箱号识别方法,所述方法包括如下步骤:步骤1:采集集装箱样本图像,根据集装箱样本图像构建循环卷积神经网络模型,对循环卷积神经网络模型训练后得到分类器;步骤2:计算图像透视变换矩阵;步骤3:利用步骤2得到的图像透视变换矩阵对待检测集装箱图像进行透视变换得到视变换后的图像;步骤4:使用步骤1的分类器对透视变换后的图像进行字符识别得到字符识别结果;步骤5:利用集装箱箱号规则对字符识别结果进行核对校验,输出最终的箱号检测结果。本发明对神经网络结构和参数进行优化,具有更高的识别率和可靠性;对图像进行透视变换,提高不同角度安装摄像头应用该方法的鲁棒性。
-
公开(公告)号:CN111652352B
公开(公告)日:2023-08-04
申请号:CN202010404179.2
申请日:2020-05-13
Applicant: 北京航天自动控制研究所
IPC: G06V10/82 , G06V10/774 , G06N3/0464 , G06N3/096
Abstract: 一种针对迁移学习的神经网络模型输入通道整合方法,首先对网络模型描述文件中的数据输入层描述进行修改,删除原数据输入层描述,增加基于图像数据列表的数据输入层描述,并将待修改的第一个卷积层重命名;然后读取神经网络模型权重文件,并对其进行修改,使对应的神经网络模型仅需要单通道数据作为输入;最后进行单通道图像数据的实时目标检测识别测试。本发明通过对经三通道训练样本数据训练的网络模型权重文件进行分析整合,形成了单通道输入的网络模型权重文件,直接在嵌入式平台部署,无需经过通道复制操作,不需要占用多余的内存空间,减轻了神经网络的计算量,降低了对信息处理资源的压力,可直接在单通道数据上完成实时目标检测识别。
-
公开(公告)号:CN111652288B
公开(公告)日:2023-08-01
申请号:CN202010393093.4
申请日:2020-05-11
Applicant: 北京航天自动控制研究所
IPC: G06V10/82 , G06V10/80 , G06V10/762 , G06N3/045 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及一种基于稠密特征金字塔的改进型SSD小目标检测方法。为丰富浅层的特征信息和深层的细节信息,本发明利用一种稠密的特征金字塔网络结构对VGG16提取的特征信息进行强化融合;为增强复杂背景下小目标的检测能力,改善特征层对不同尺寸小目标的适应能力,本发明结合不同深度特征层感受野的特点,提出在同一特征层上增加预测框的部署密度以及在同一特征层上通过增加不同尺度大小的预测框,即PriorBox的数量和尺寸进行了相应的调整。
-
公开(公告)号:CN111523645B
公开(公告)日:2023-04-18
申请号:CN202010300550.0
申请日:2020-04-16
Applicant: 北京航天自动控制研究所
IPC: G06N3/0464 , G06N3/082
Abstract: 本发明一种提升小尺度目标检测识别性能的卷积神经网络设计方法,步骤如下:(1)选取原始网络的N个输出节点;(2)对每一个节点依次建立特征漏斗层,对每一层特征漏斗层的输入节点至下一层特征漏斗层的输入节点或网络末端之间的卷积网络,保留网络结构的同时将原始网络中一半数量的卷积核移动至特征漏斗层内,若有池化层则取消池化层,若有大步长卷积则将步长设置为1,保留的原始网络部分称为该特征漏斗层对应原始网络层;(3)建立每一层特征漏斗层的输出,对每一层特征漏斗层末端设置两个输出,称为特征漏斗层的输出一和特征漏斗层的输出二;(4)级联全部特征漏斗层,构建特征漏斗网络;(5)进行多尺度预测,完成网络设计。
-
公开(公告)号:CN111652352A
公开(公告)日:2020-09-11
申请号:CN202010404179.2
申请日:2020-05-13
Applicant: 北京航天自动控制研究所
Abstract: 一种针对迁移学习的神经网络模型输入通道整合方法,首先对网络模型描述文件中的数据输入层描述进行修改,删除原数据输入层描述,增加基于图像数据列表的数据输入层描述,并将待修改的第一个卷积层重命名;然后读取神经网络模型权重文件,并对其进行修改,使对应的神经网络模型仅需要单通道数据作为输入;最后进行单通道图像数据的实时目标检测识别测试。本发明通过对经三通道训练样本数据训练的网络模型权重文件进行分析整合,形成了单通道输入的网络模型权重文件,直接在嵌入式平台部署,无需经过通道复制操作,不需要占用多余的内存空间,减轻了神经网络的计算量,降低了对信息处理资源的压力,可直接在单通道数据上完成实时目标检测识别。
-
公开(公告)号:CN111368935A
公开(公告)日:2020-07-03
申请号:CN202010188535.1
申请日:2020-03-17
Applicant: 北京航天自动控制研究所
Abstract: 本发明一种基于生成对抗网络的SAR时敏目标样本增广方法,步骤如下:1)构建区域卷积生成对抗网络,实现两模型的前向与反向传播功能;2)制作区域卷积生成对抗网络训练数据集,从目标检测训练数据集中提取切片;3)对区域卷积生成对抗网络进行训练,利用对抗网络训练数据集对区域卷积生成对抗网络进行迭代训练,直到区域卷积生成对抗网络中的生成模型获得稳定且符合期望的输出结果,并保存生成模型与判别模型的权重;4)调整参数批量生成样本,对完成训练的区域卷积生成对抗网络中生成模型装订所保存的参数,根据实际使用需求设置参数输入至生成模型,生成符合期望框体的样本;5)制作用于目标检测识别算法训练的数据集。
-
公开(公告)号:CN114067195B
公开(公告)日:2024-08-13
申请号:CN202111221228.X
申请日:2021-10-20
Applicant: 北京航天自动控制研究所
IPC: G06V20/00 , G06V10/774 , G06V10/82 , G06N3/044 , G06N3/0464 , G06N3/0475 , G06N3/084 , G06N3/094
Abstract: 本发明公开了一种基于生成对抗的目标检测器学习方法,属于人工智能技术领域,促使样本生成器生成更加真实的生成图像,使得生成图像提高网络的检测性能,还能够提高网络的训练效率。方法包括:构建循环生成对抗学习模型;所述循环生成对抗学习模型包括两组样本生成器;构建联合网络模型;所述联合网络模型在所述循环生成对抗学习模型中集成有目标检测器;所述目标检测器与所述两组样本生成器相连,并将两组真实图像,以及由所述两组样本生成器生成的两组生成图像作为输入,在梯度反向传播过程中将梯度值输出至所述两组样本生成器;对所述联合网络模型进行训练,并将由所述目标检测器输出的梯度值反向传播至对应的样本生成器中,直至所述联合网络模型收敛。
-
-
-
-
-
-
-
-
-