-
公开(公告)号:CN104595446B
公开(公告)日:2018-05-18
申请号:CN201310524332.5
申请日:2013-10-30
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: F16H25/22
Abstract: 本发明属于航天伺服技术领域,具体涉及一种机电作动器用新型防卡死装置;本发明的目的是提供一种用于滚动螺旋传动类机电作动器的机电作动器用新型防卡死装置;包括铜球(1)、支撑环(2)、开槽沉头螺钉(3)及丝杠(4),其中支撑环(2)左侧内孔为径向定位面,与丝杠(4)的外圆面为过渡配合并通过4个槽沉头螺钉(3)连接紧固,铜球(1)内嵌在支撑环(2)的右侧内侧滚道中;有效减小产生的预紧力,防止螺旋传动副卡死,有效提高机电作动器的可靠性,具有吸收冲击载荷的能力,并具有较好的超载使用性能,利于小型化的实现,并且滚珠材料选为铍青铜,符合使用工况,其弹性模量相对较低、屈服强度相对较高。
-
公开(公告)号:CN106275520A
公开(公告)日:2017-01-04
申请号:CN201610779776.7
申请日:2016-08-30
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: B64G4/00
Abstract: 本发明公开了一种用于空间机器人推进的装置,该装置包括本体、储气罐、减压阀、稳压气容、比例控制阀、推进器、控制器和空间机械臂;其中,所述本体与所述空间机械臂相连接;所述储气罐、所述减压阀和所述稳压气容设置于所述本体内,所述储气罐、所述减压阀和所述稳压气容依次通过气管相连接;所述比例控制阀设置于所述空间机械臂内,所述控制器设置于所述本体内,所述比例控制阀的一端通过气管与所述稳压气容相连接,所述控制器与所述比例控制阀的引脚相连接;所述推进器设置于所述空间机械臂的末端,所述推进器通过气管与所述比例控制阀的另一端相连接。本发明通过推力的大小、方向和作用点提升了空间机器人的机动性和灵活性。
-
公开(公告)号:CN105041760A
公开(公告)日:2015-11-11
申请号:CN201510309782.1
申请日:2015-06-08
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
CPC classification number: F15B15/1447 , F16J9/00
Abstract: 本发明公开了一种高压薄壁大直径挤压油箱,包括油箱缸筒、支撑芯杆、活塞、端盖,其中,圆柱筒状结构的油箱缸筒一端连接有端盖,在油箱缸筒的中心轴线上设有支撑芯杆,支撑芯杆内腔安装有位移传感器,用于测量油箱中储油量;在支撑芯杆上密封套有活塞,活塞将油箱缸筒隔成油腔和气腔,活塞上设有对油气进行隔离的双道Y型密封圈,其与油箱缸筒的内壁配合;所述端盖为外凸的盖体,其与油箱缸筒阶梯型焊接;活塞内外圈设置双导向,以增大油箱的储油量。本发明活塞外圈采用Y型圈,其对缸筒变形适应能力强,采用该种形式密封可以有效补偿缸筒变形而造成的密封失效,使油箱在高振动、高冲击量级下工作时具有很好的密封效果。
-
公开(公告)号:CN106275520B
公开(公告)日:2018-08-31
申请号:CN201610779776.7
申请日:2016-08-30
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: B64G4/00
Abstract: 本发明公开了一种用于空间机器人推进的装置,该装置包括本体、储气罐、减压阀、稳压气容、比例控制阀、推进器、控制器和空间机械臂;其中,所述本体与所述空间机械臂相连接;所述储气罐、所述减压阀和所述稳压气容设置于所述本体内,所述储气罐、所述减压阀和所述稳压气容依次通过气管相连接;所述比例控制阀设置于所述空间机械臂内,所述控制器设置于所述本体内,所述比例控制阀的一端通过气管与所述稳压气容相连接,所述控制器与所述比例控制阀的引脚相连接;所述推进器设置于所述空间机械臂的末端,所述推进器通过气管与所述比例控制阀的另一端相连接。本发明通过推力的大小、方向和作用点提升了空间机器人的机动性和灵活性。
-
公开(公告)号:CN105332973B
公开(公告)日:2017-09-29
申请号:CN201510673368.9
申请日:2015-10-16
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: F15B21/04
Abstract: 本发明涉及一种直列管式冷却器,特别涉及一种电液伺服机构用冷却器及冷却方法,该冷却器可串联、内嵌于电液伺服机构主体结构中,实现电液伺服机构工作介质油液冷却,属于电液伺服机构冷却技术领域。该冷却器包括不锈钢壳体、前端板、折流板、管束、后端板和支撑杆。本发明的低温气体是伺服机构做功后的气体,实现对伺服机构液压油的冷却,不需要外界再引入冷却介质,能源利用率高;本发明通过在不锈钢壳体的外表面上一体成型一个带有进油通道和出油通道的加强筋,使得冷却器的结构紧凑,且该加强筋可作为通道,不需要额外配置管路通道及接头附件,使得冷却器减重效果明显。
-
公开(公告)号:CN104634190B
公开(公告)日:2016-06-08
申请号:CN201510086921.9
申请日:2015-02-17
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种具有简易姿控功能的机电伺服系统。根据本发明的具有简易姿控功能的机电伺服系统,包括机电作动器、伺服控制驱动器和伺服动力电源,其中,伺服控制驱动器用于接收飞行器中央控制系统发送的控制指令并驱动机电作动器,伺服动力电源为整个机电伺服系统提供电能,机电伺服系统还包括电源转换器,电源转换器用于在伺服控制驱动器与飞行器中央控制系统分离后将伺服动力电源的高压直流电转换得到控制伺服控制驱动器的转换控制电。本发明通过设置电源转换器,在与飞行器中央控制系统分离后,电源转换器将伺服动力电源的高压直流电转换得到控制伺服控制驱动器的转换控制电,使得机电伺服系统继续工作,推动分离后的发动机偏离一定的角度,防止追击上面级的飞行器。
-
公开(公告)号:CN104634190A
公开(公告)日:2015-05-20
申请号:CN201510086921.9
申请日:2015-02-17
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种具有简易姿控功能的机电伺服系统。根据本发明的具有简易姿控功能的机电伺服系统,包括机电作动器、伺服控制驱动器和伺服动力电源,其中,伺服控制驱动器用于接收飞行器中央控制系统发送的控制指令并驱动机电作动器,伺服动力电源为整个机电伺服系统提供电能,机电伺服系统还包括电源转换器,电源转换器用于在伺服控制驱动器与飞行器中央控制系统分离后将伺服动力电源的高压直流电转换得到控制伺服控制驱动器的转换控制电。本发明通过设置电源转换器,在与飞行器中央控制系统分离后,电源转换器将伺服动力电源的高压直流电转换得到控制伺服控制驱动器的转换控制电,使得机电伺服系统继续工作,推动分离后的发动机偏离一定的角度,防止追击上面级的飞行器。
-
公开(公告)号:CN104617848A
公开(公告)日:2015-05-13
申请号:CN201510089865.4
申请日:2015-02-27
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: H02P21/00
Abstract: 本发明提供了一种多通道电流错峰控制方法,包括:在同一时间分别确定多台电机中每一台电机的三相相电流的最大值;分别判断各最大值是否大于额定电流,并根据判断结果进行以下操作:如果最大值不大于额定电流,则根据标准空间矢量算法计算与其对应的电机相应的占空比,从而控制该电机的三相相电流;如果最大值大于额定电流,则判断该最大值是否为各电机最大值中数值最大的最大值,并根据判断结果进行进一步操作。本发明提供的多通道电流错峰控制方法及装置,可以大幅减小对伺服动力电源的峰值功率需求,使伺服系统的集成化和小型化程度更高,用于机电伺服系统多通道控制驱动器输出控制。
-
公开(公告)号:CN104595446A
公开(公告)日:2015-05-06
申请号:CN201310524332.5
申请日:2013-10-30
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: F16H25/22
CPC classification number: F16H25/2021 , F16H25/2204 , F16H2025/204
Abstract: 本发明属于航天伺服技术领域,具体涉及一种机电作动器用新型防卡死装置;本发明的目的是提供一种用于滚动螺旋传动类机电作动器的机电作动器用新型防卡死装置;包括铜球(1)、支撑环(2)、开槽沉头螺钉(3)及丝杠(4),其中支撑环(2)左侧内孔为径向定位面,与丝杠(4)的外圆面为过渡配合并通过4个槽沉头螺钉(3)连接紧固,铜球(1)内嵌在支撑环(2)的右侧内侧滚道中;有效减小产生的预紧力,防止螺旋传动副卡死,有效提高机电作动器的可靠性,具有吸收冲击载荷的能力,并具有较好的超载使用性能,利于小型化的实现,并且滚珠材料选为铍青铜,符合使用工况,其弹性模量相对较低、屈服强度相对较高。
-
公开(公告)号:CN104948510B
公开(公告)日:2017-07-28
申请号:CN201510320050.2
申请日:2015-06-11
Applicant: 北京精密机电控制设备研究所 , 中国运载火箭技术研究院
IPC: F15B1/02 , F15B11/072 , F15B11/16
Abstract: 本发明涉及一种挤压式伺服系统参数确定方法,挤压式伺服系统包括挤压式能源和执行机构,其中挤压式能源包括初级气源、次级油源和蓄能能源,本发明通过对挤压式伺服系统中挤压式能源和执行机构的具体参数进行了优化设计,实现了挤压式伺服系统性能最优,且实现了系统的轻量化、小型化,降低了产品的研制难度,缩短了研制周期,提高了研制效率,能够快速满足航天运载器对大功率伺服系统的需求;本发明通过对蓄能能源的参数设计,实现了单工况设计满足双工况需求,低工况设计满足高工况需求,可降低初级能源的功率输出需求,大幅度提高伺服系统能源的功率利用效率。
-
-
-
-
-
-
-
-
-