-
公开(公告)号:CN113008386A
公开(公告)日:2021-06-22
申请号:CN202110124399.4
申请日:2021-01-29
Applicant: 北京空间飞行器总体设计部
IPC: G01J5/20
Abstract: 本发明公开了一种高温度均匀性面源黑体控温结构。本发明面源黑体结构采用黑体和温控冷板一体化设计,黑体内部设计有两相工质流道,流道内两相工质直接作用于黑体,消除了温控冷板与黑体间的接触热阻,有效减小了两相工质与黑体间的换热温差,增强了两相工质对于黑体表面的温度调节能力。两相工质流道由多条平行微型槽道并联组成,均匀分布在黑体内部,使得两相工质在黑体内部均匀分配,两相工质在黑体内部发生流动沸腾,换热系数较单相回路高一个数量级,温度控制能力强,且控温范围大、稳定性好、精度高。同时,采用嵌入接触式测温测量黑体表面温度,避免环境干扰,测温精度高。
-
公开(公告)号:CN112462816A
公开(公告)日:2021-03-09
申请号:CN202011193353.X
申请日:2020-10-30
Applicant: 北京空间飞行器总体设计部
IPC: G05D23/19
Abstract: 本发明公开了一种用于提高系统温度稳定性的自适应控温方法。本发明以被控对象的温度稳定性,即一段时间内的温度波动值,而非被控对象的实测温度,作为温控系统加热功率控制的输入依据和控制目标,在保证满足被控对象温度稳定性需求的前提下,可随着热环境的变化,自动调整目标温度,使系统效能达到最优,大大提升了控温策略的适应性,并显著节约控温系统的能源消耗。
-
公开(公告)号:CN109032203B
公开(公告)日:2021-02-19
申请号:CN201810753221.4
申请日:2018-07-10
Applicant: 北京空间飞行器总体设计部
IPC: G05D23/19
Abstract: 本发明公开一种智能自主热控系统,能够解决传统热控系统灵敏度差、响应速度慢、研制成本高等缺点,该热控系统包括感知单元、执行单元和控制单元。通过感知单元获得航天平台所在深冷环境的热流参数以及航天平台内部单机的相关热参数(电流、电压),并把获得的热参数发送给控制单元。控制单元依据接收到的热参数驱动执行单元,使执行单元进行热量自主管控;同时执行单元将管控后的结果反馈给控制单元,控制单元依此调控执行单元,保证热量管控结果与设定目标一致,实现热量的智能闭环管理。
-
公开(公告)号:CN117687452A
公开(公告)日:2024-03-12
申请号:CN202311529710.9
申请日:2023-11-16
Applicant: 北京空间飞行器总体设计部
IPC: G05D23/20
Abstract: 本发明卫星控温技术领域,特别是涉及一种基于虚拟热容主动补偿的卫星控温装置及方法。包括舱板、隔板、内侧板、安装板、智能关节、安装点、温度敏感元件,舱板作为卫星控温装置的外侧板,隔板安装于舱板内侧,内侧板安装于隔板内侧,安装板安装于内侧板内侧,安装板的内侧设置有温度敏感元件,智能关节用于将安装板固定于内侧板上,智能关节与安装板接触位置处设置有安装点,智能关节用于通过内部的温度反馈系统控制安装点温度,以使温度敏感元件的温度在预设范围内。本发明通过牺牲能源对热容进行数字补偿,可以对频率较低的噪声信号进行抑制。本发明控温精度更高,可达μK级别,可以满足一些低频噪声特殊应用的卫星的技术要求。
-
公开(公告)号:CN112340070B
公开(公告)日:2022-01-21
申请号:CN202011053254.1
申请日:2020-09-29
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明涉及一种高稳定度测控温系统地面试验系统设计方法,针对卫星内部高稳定度测控温系统建立地面检测试验系统。具体分为三个阶段,第一阶段,测温电路噪声测试:针对测温电路单板或单机,配合标准电阻进行测温噪声测试,用于标定测温电路自身的噪声水平;第二阶段,测温组件噪声测试:在完成测温电路自身噪声水平测试后,进行测温组件噪声测试,用于标定整体测温系统的噪声水平;第三阶段,测控温组件地面模拟试验:完成前两个阶段测试后,进行测控温组件地面模拟试验,在真实环境模拟下,进行高稳定度测控温体系的整体噪声测试。本发明实现了高稳定度测控温体系的地面试验。
-
公开(公告)号:CN112286255B
公开(公告)日:2021-09-24
申请号:CN202011053268.3
申请日:2020-09-29
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明涉及一种高稳定度测控温系统在轨噪声评价方法,用于高稳定度测控温体系中的测控温组件在轨飞行时的噪声评价。本发明解决了高稳定性热控需求情况下,由于温度波动的范围很窄,测温噪声的影响不可忽略,导致原有的时域温度评判标准不再适用的问题,属于航天器热控制技术领域。本发明包含时域分析评价和频域分析评价,时域评价基于统计方法中的均值及方差,用以描述正态分布下数据的偏移情况;频域评价体系基于傅里叶变换后,求得频域的功率谱密度(PSD)曲线,用以描述噪声能量在各频段下的分布情况,从而评价温度噪声在频域下对其他测量系统的影响。
-
公开(公告)号:CN112286255A
公开(公告)日:2021-01-29
申请号:CN202011053268.3
申请日:2020-09-29
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明涉及一种高稳定度测控温系统在轨噪声评价方法,用于高稳定度测控温体系中的测控温组件在轨飞行时的噪声评价。本发明解决了高稳定性热控需求情况下,由于温度波动的范围很窄,测温噪声的影响不可忽略,导致原有的时域温度评判标准不再适用的问题,属于航天器热控制技术领域。本发明包含时域分析评价和频域分析评价,时域评价基于统计方法中的均值及方差,用以描述正态分布下数据的偏移情况;频域评价体系基于傅里叶变换后,求得频域的功率谱密度(PSD)曲线,用以描述噪声能量在各频段下的分布情况,从而评价温度噪声在频域下对其他测量系统的影响。
-
公开(公告)号:CN105823793B
公开(公告)日:2019-02-12
申请号:CN201610318529.7
申请日:2016-05-13
Applicant: 北京空间飞行器总体设计部
Inventor: 刘国青 , 罗文波 , 阮剑华 , 白刚 , 蔡铮 , 孙腾飞 , 童叶龙 , 王杰利 , 杨文涛 , 张国斌 , 杨国巍 , 戴超 , 曾福明 , 杨巧龙 , 史文华 , 高峰 , 钱志英
Abstract: 本发明提供一种常温常压微米级热稳定性试验系统及试验方法,其试验系统包括:支撑架、支撑平台、CCD相机、图像处理计算机、热控加热器、热控程控电源、测温元件、热控测温采集卡、热控计算机;被测对象为测量结构;测量结构与支撑架均固定在支撑平台上;CCD相机安装于支撑架上,安装位置满足CCD相机监测到测量结构的安装面和主支撑结构外表面;图像处理计算机与CCD相机连接;热控加热器、测温元件均布置于测量结构的表面,热控程控电源与热控加热器连接;热控测温采集卡与测温元件连接,热控计算机分别与热控程控电源、热控测温采集卡连接。本发明的试验系统及方法可以有效消除测试噪声影响,保证常温常压条件下测试精度。
-
公开(公告)号:CN119126877A
公开(公告)日:2024-12-13
申请号:CN202411263040.5
申请日:2024-09-10
Applicant: 哈尔滨工业大学 , 北京空间飞行器总体设计部
IPC: G05D23/20
Abstract: 一种主被动控温相结合的mK级超稳恒温装置及方法,属于航空航天技术领域,本发明为解决现有航天器领域恒温系统的恒温稳定度无法达到mK级的问题。本发明方案:铝箔外壳包裹在隔热结构外表面上,恒温结构置于隔热结构正中心的正方体槽内;恒温结构为中间留有槽的实心铝合金正方体块,恒温结构的外表面覆设加热薄膜,高精度测温仪的测温Ⅰ路探测头设置于恒温结构的槽内,用于探测恒温结构的实时温度,高精度测温仪的测温Ⅱ路探测头用于探测环境温度,所述恒温结构的实时温度和环境温度同时发送给恒温控制电路,恒温结构计算对应电压值驱动加热薄膜对恒温结构进行加热的温度控制,以实现恒温结构的温度达到并稳定在目标温度。
-
公开(公告)号:CN117602108A
公开(公告)日:2024-02-27
申请号:CN202311529705.8
申请日:2023-11-16
Applicant: 北京空间飞行器总体设计部
Abstract: 本发明涉及航天热控技术领域,特别是涉及一种极低励磁控温装置在轨供电方法及装置。包括:选择在轨供电输出的波形;选择在轨供电输出的幅值;选择在轨供电输出的频率。选择在轨供电输出的波形包括:根据极低励磁控温装置的光学平台与矢量磁力仪之间的距离和补偿功率,得到极低励磁控温装置的加热器供电方式;通过软件仿真建模得到补偿功率的布局、功率;建立仿真模型;得到加热回路;距离矢量磁力仪设定阈值范围以内的加热回路,通过正弦波供电,距离矢量磁力仪设定阈值范围以外的加热回路,通过方波供电。本发明针对当前控温系统局部励磁过强的问题提出了使用交流电供电的解决方法,形成了针对极低励磁控温装置的交流电供电设计方法。
-
-
-
-
-
-
-
-
-