-
公开(公告)号:CN104726639A
公开(公告)日:2015-06-24
申请号:CN201510112842.0
申请日:2015-03-13
Applicant: 北京科技大学
IPC: C21C7/00
Abstract: 本发明是一种使钢中外加纳米粒子均匀弥散的方法,涉及钢铁冶金技术领域。利用冶金研究最常用的实验设备,通过简单且易推广应用的操作方法,实现了纳米粒子在钢液中的均匀弥散化。其方法包括:将纳米粒子与合金纳米粉混合并分散均匀后,压制成块,利用钼棒加入钢液底部,纳米粒子在钢液中被释放过程中配以数次搅拌,最后以水冷的方式得到钢锭,其中的纳米粒子均匀弥散。本发明所涉及的关键操作,纳米粒子预分散、粉剂压块处理、物料加入钢液内部以及强烈搅拌作用,为进一步实现工业应用提供了借鉴意义。
-
公开(公告)号:CN118835171B
公开(公告)日:2024-11-29
申请号:CN202411313517.6
申请日:2024-09-20
Applicant: 北京科技大学
IPC: C22C38/02 , C22C38/04 , C22C38/06 , C22C38/50 , C22C38/42 , C22C38/60 , C22C33/04 , C21C7/10 , C21C7/00 , B22D11/00 , B21B1/16 , F16C33/00
Abstract: 本申请提供一种高温组织稳定的高碳铬轴承钢及其制备方法和高碳铬轴承,涉及冶金领域。高温组织稳定的高碳铬轴承钢包括:C:0.95%~1.1%,Mn:0.25%~0.55%,Cr:1.3%~1.5%,Si:0.15%~0.35%,Ti:0.0005%~0.0012%,Alt:0.027%~0.04%,Cu≤0.05%,Ni≤0.15%,Te:0.03~0.1%,N:0.01%~0.02%,O≤0.0006%,S≤0.003%,P≤0.003%,余量为Fe和不可避免的杂质元素。该轴承钢通过单一的碲元素提升产品强度,替代了常规通过复合添加Nb和Ti元素提升强度的成分设计,降低了产品的合金添加成本。
-
公开(公告)号:CN117165872A
公开(公告)日:2023-12-05
申请号:CN202311444048.7
申请日:2023-11-02
Applicant: 北京科技大学
Abstract: 本申请提供一种高扩孔率的单钛微合金化耐蚀高强钢,涉及冶金领域。高扩孔率的单钛微合金化耐蚀高强钢由以下组分组成:C:0.06%‑0.07%、Mn:1.1%‑1.5%,Ti:0.09%‑0.10%,Alt:0.026%‑0.03%,Cr:0.015%‑0.020%,Cu:0.016%‑0.022%,Ni:0.024‑0.027%,N:0.001%‑0.003%,S:0‑0.005%,P:0‑0.003%,其余为Fe和不可避免的杂质元素。本申请提供的高扩孔率的单钛微合金化耐蚀高强钢,钢材的强度和韧性高,具有较高的扩孔率,替代了常规的复合添加Nb元素和Ti元素提升强度的成分设计,降低了成本。
-
公开(公告)号:CN116835581A
公开(公告)日:2023-10-03
申请号:CN202310828222.1
申请日:2023-07-07
Applicant: 北京科技大学
Abstract: 本申请提供一种氟化物熔盐体系中在石墨材料上化学镀制备碳化钼涂层的方法,涉及涂层领域。该方法包括:将NaF、AlF3、MoO3、Al2O3和反应容器进行干燥,然后将NaF、AlF3置于反应容器中,再放入反应装置中在200‑250℃条件下进行保温;将反应装置抽真空,然后通入惰性气体,升温至500‑550℃,再次抽真空、通入惰性气体进行保温;升温至800‑1050℃,将MoO3、Al2O3加入到反应容器中得到熔盐;将预处理后的石墨材料置于熔盐中。本申请提供的方法,使用氟化物体系熔盐,具有良好的热稳定性、流动性、宽的液态工作范围、高的活性元素的溶解能力,相对传统氯化物/硼化物熔盐体系具有众多优势。
-
公开(公告)号:CN116815067A
公开(公告)日:2023-09-29
申请号:CN202310573323.9
申请日:2023-05-19
Applicant: 北京科技大学
Abstract: 本申请提供一种高强钢及其制备方法和应用,涉及冶金领域。高强钢,以质量百分比计算,由以下成分组成:C:0.06%‑0.09%,Mn:1.5%‑2.1%,Ti:0.02%‑0.16%,Alt:0.03%‑0.035%,N:0.001%‑0.003%,S≤0.008%,P≤0.015%,其余为Fe和不可避免的杂质元素。高强钢的制备方法,包括:将原料依次进行转炉冶炼、LF精炼、RH精炼、连铸和轧制,得到所述高强钢。高强钢的应用,用于制造汽车本申请提供的高强钢,通过单一的Ti元素提升产品强度,替代了常规的通过复合添加Nb元素和Ti元素提升强度的的成分设计,降低了产品的合金添加成本。
-
公开(公告)号:CN113718138A
公开(公告)日:2021-11-30
申请号:CN202111291142.4
申请日:2021-11-03
Applicant: 北京科技大学
IPC: C22C19/05 , C22C1/02 , C22C1/06 , B22D11/045 , B22D11/113
Abstract: 本申请提供一种VIDP+VHCC双联生产粉末高温合金母合金的方法和粉末高温合金母合金。VIDP+VHCC双联生产粉末高温合金母合金的方法,包括:将所述粉末高温合金母合金的原料使用VIDP炉熔炼,然后加入渣料,同时通过VIDP炉底部供气元件吹氩气,进行渣金反应;所述渣金反应结束并达到浇铸温度时进行真空水平连铸,得到所述粉末高温合金母合金棒坯。粉末高温合金母合金,使用所述的VIDP+VHCC双联生产粉末高温合金母合金的方法制得。本申请提供的VIDP+VHCC双联生产粉末高温合金母合金的方法,可显著提升合金的纯净度,改善合金的力学性能和热工艺性能,达到提高粉末高温合金成品率、服役寿命和可靠性的要求。
-
公开(公告)号:CN113549734A
公开(公告)日:2021-10-26
申请号:CN202110826796.6
申请日:2021-07-21
Applicant: 北京科技大学
Abstract: 本申请提供一种QD08钢精炼渣系和冶炼QD08钢的方法。QD08钢精炼渣系,以质量百分比计算,包括:氧化钙33.9‑56.2%、氧化硅20.2%‑27.2%、氧化铝16.8‑32.5%和氧化镁6.4%‑6.8%。冶炼QD08钢的方法,包括:转炉冶炼得到预定成分的钢水,然后再LF精炼过程中通过调渣、脱氧、成分调整和加钙,得到所述的QD08钢精炼渣系,然后软吹、连铸得到QD08钢。本申请提供的QD08钢精炼渣系和冶炼QD08钢的方法,能够有效去除Ds类夹杂物。
-
公开(公告)号:CN112795848A
公开(公告)日:2021-05-14
申请号:CN202110299382.2
申请日:2021-03-22
Applicant: 北京科技大学
Abstract: 本发明涉及一种易切削耐腐蚀钢及其制备方法。所述易切削耐腐蚀钢包含以质量百分比计的组分:C,0.015~0.024%;Si,0.4~0.5%;Mn,1.2~1.3%;S,0.24~0.3%;P,0.02~0.03%;Mo,1.5~1.75%;Cr,19~20%;Ca,0.03~0.08%;Mg,0.01~0.02%;Al,0.02~0.05%;Te,0.012~0.03%;余量为Fe和杂质。所述方法:将易切削钢、铬铁混料和渣料混匀,在高温下完全熔化,得到熔料;往熔料中加入碲并保温处理,经冷却,得到易切削耐腐蚀钢。本发明中的易切削耐腐蚀钢具有最佳的成分配比,具有综合最佳的易切削性能和耐腐蚀性能。
-
公开(公告)号:CN112792331A
公开(公告)日:2021-05-14
申请号:CN202110364740.3
申请日:2021-04-06
Applicant: 北京科技大学
Abstract: 本发明涉及一种在浇注过程中钢包底吹氩气的方法及系统和应用。所述方法为:将钢包置于浇注位进行浇注;钢包内含有钢液和精炼渣,精炼渣置于钢液的上方;在浇注过程中,实时监测钢液面高度和精炼渣厚度,并根据精炼渣厚度、精炼渣表面张力以及钢液面高度和精炼渣厚度之和与钢包的整体深度之比(Hsteel+Hslag)/H动态调控底吹氩气的流量;当(Hsteel+Hslag)/H<0.25时,停止底吹氩气。本发明在保证钢液不卷渣情况下强化浇注过程钢包熔池搅拌,强制了钢液净化,改善了钢液质量;本发明解决了现有钢包底吹氩工艺时间长,钢包浇注过程中功能单一的问题,降低了生产工艺时间,节约了生产成本。
-
公开(公告)号:CN112528527A
公开(公告)日:2021-03-19
申请号:CN202110173195.X
申请日:2021-02-09
Applicant: 北京科技大学
IPC: G06F30/20 , G06F30/28 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 本发明公开了一种模拟分析电弧等离子体的装置和方法,涉及到分析冶金行业中电弧等离子体预测方法。具体实施方式包括:建模模块;激活模块;第一设置模块;第二设置模块,至少设置两个入口速度;配置模块,用于配置求解器,并使求解器动态连接控制方程;求解模块用于利用求解器对每个入口速度对应的模拟数据进行求解计算得到模拟结果;处理模块用于处理模拟结果生成不同入口速度对应的电弧温度分布图和电弧中心轴线速度分布图。该实施方式能够模拟真实电弧的形成过程,实现对不同入口速度的电弧等离子体的分布特征进行研究,避免了实际操作测量电弧特征的困难性,提高了工程应用的效率。
-
-
-
-
-
-
-
-
-