一种装备特性知识联想补全方法及系统

    公开(公告)号:CN119358649A

    公开(公告)日:2025-01-24

    申请号:CN202411362577.7

    申请日:2024-09-27

    Abstract: 本发明涉及一种装备特性知识联想补全方法及系统,属于数据处理技术领域,解决了现有推理出来的装备特性知识不准确的问题。包括:从装备特性数据集中选取装备特性数据屏蔽部分内容后与预置的提示词拼接作为训练样本放入训练集;对基于多头自注意力机制的Transformer大模型进行改进,引入记忆模块和融合模块;记忆模块基于多头自注意力机制的处理结果更新记忆矩阵,融合模块融合Transformer模块和记忆模块的输出;利用训练集训练改进的大模型得到知识补全模型;将装备特性数据集中完整的装备特性知识传入知识补全模型,更新记忆模块的记忆矩阵,得到学习后的知识补全模型;利用学习后的知识补全模型补全装备特性知识。实现了装备特性知识的准确补全。

    一种网状指标体系的赋权方法及系统

    公开(公告)号:CN117332923A

    公开(公告)日:2024-01-02

    申请号:CN202311298194.3

    申请日:2023-10-09

    Abstract: 本发明涉及一种网状指标体系的赋权方法及系统,属于数据处理技术领域,解决了现有技术中无法对非线性耦合指标客观赋权的问题。包括:构建网状指标体系;通过作战仿真采集样本数据,根据每条样本数据计算出网状指标体系中末级的各项指标值,构建初始指标矩阵;利用主成分分析法获取初始指标矩阵降维后的字典指标矩阵;利用Lasso算法得到回归系数矩阵,归一化后作为指标权重矩阵;计算指标权重矩阵中每个指标的平均权重,当平均权重的标准差小于1,则根据平均权重更新初始指标矩阵,再次利用主成分分析法和Lasso算法得到新的平均权重,当平均权重的标准差大于1,停止迭代,最后的平均权重即为指标权重。实现了网状指标体系的客观赋权。

Patent Agency Ranking