电力列车的受电弓碳滑板缺陷的检测方法

    公开(公告)号:CN109658387B

    公开(公告)日:2023-10-13

    申请号:CN201811425533.9

    申请日:2018-11-27

    Abstract: 本发明提供一种电力列车的受电弓碳滑板缺陷的检测方法。该方法包括:构建改进的RCNN网络模型,利用训练集数据对改进的RCNN网络模型进行训练。通过安装在列车轨道旁的工业线阵相机采集电力列车的受电弓图片,将受电弓图片输入到训练好的改进的RCNN网络模型,改进的RCNN网络模型利用卷积运算提取所述受电弓图片中的受电弓碳滑板区域,利用损失函数对受电弓碳滑板区域进行缺陷类别检测。本发明的方法通过区域生成网络和快速区域卷积神经网络的结合,对训练图片的自主学习与特征提取,从而能对采集系统拍摄的图片中受电弓碳滑板的有效区域及缺陷类别进行分析,能够对受电弓碳滑板的状态进行实时监测,保障城市轨道列车安全运行,具有较大的应用前景。

Patent Agency Ranking