-
公开(公告)号:CN106872195B
公开(公告)日:2019-04-09
申请号:CN201710010082.1
申请日:2017-01-06
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明公开了一种高速飞行器气动热飞行试验数据的关联分析方法,包括:基于飞行器第一典型部位和第二典型部位之间热流的三维流线关系,对所述三维流线关系进行解析拟合,得到所述第一典型部位与第二典型部位之间热流的关联简式;根据所述关联简式,对不同典型部位的气动热数据进行关联分析。通过本发明提高了典型部位的气动热数据的利用效率,降低了测试成本,提高了测试效率。
-
公开(公告)号:CN110626519B
公开(公告)日:2021-06-11
申请号:CN201910791669.X
申请日:2019-08-26
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种降低对流动转捩影响的飞行器表面缺陷尺度控制方法,首先利用理论分析手段或地面试验手段对飞行器开展流动转捩研究,得出满足边界层转捩不受影响的表面缺陷尺度的约束范围;然后针对产生缺陷的部段开展气动加热、结构温度场和变形场联合仿真分析,从结构变形计算结果中提取得到飞行过程中产生缺陷的各部段热变形量数据;最后利用初始缺陷尺度抵消热变形量的策略,根据约束范围和热变形量数据设计初始应加工的缺陷尺度,确保飞行过程中实际缺陷尺度满足约束范围。本发明可以合理且有效的控制飞行器表面缺陷尺度,降低其诱发表面提前转捩的可能,确保飞行器热防护系统可靠工作。
-
公开(公告)号:CN108132112A
公开(公告)日:2018-06-08
申请号:CN201711115268.X
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 李宇 , 陈伟华 , 黄建栋 , 刘国仟 , 聂亮 , 刘宇飞 , 檀妹静 , 景丽 , 高扬 , 聂春生 , 颜维旭 , 陈轩 , 周禹 , 曹占伟 , 王振峰 , 季妮芝 , 高翔宇 , 于明星 , 闵昌万 , 陈敏
Abstract: 本发明提供了一种高超声速飞行器表面热流辨识装置及设计方法,属于高超声速飞行器热参数测量技术领域。该装置包括:热传导敏感元件、敏感元件隔热套、敏感元件压板、温度传感器,热传导敏感元件为柱状结构,敏感元件隔热套为带通孔的柱状结构,热传导敏感元件位于敏感元件隔热套通孔中,与敏感元件隔热套间隙配合,敏感元件一侧与隔热套外表面平齐,形成测量端面,另一侧底部安装有温度传感器,敏感元件压板压住热传导敏感元件,与敏感元件隔热套间隙配合安装,敏感元件隔热套、敏感元件与敏感元件隔热套之间的间隙以及敏感元件压板共同阻隔热传导敏感元件除测量端面以外的部分与外部环境之间热量交换。本发明克服了传统热流传感器对于长时间高热流测量的适应性差以及传感器尺寸大、重量大、安装受限大、难以实现密集测量问题。
-
公开(公告)号:CN107958206A
公开(公告)日:2018-04-24
申请号:CN201711086206.0
申请日:2017-11-07
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种飞行器表面热流辨识装置温度测量数据预处理方法,属于航空航天飞行试验热学参数测量及处理技术领域。该方法首先对热流辨识装置的温升测量数据进行局部失真点(局部跳点)进行剔除的处理,然后利用N个相邻数据点平均的光滑处理方法对测量数据进行平滑处理,最后得到满足热流辨识要求的温度测量数据。所述N值根据温度传感器相关参数和温度曲线特征进行确定。使用本发明完成预处理后的温度测量数据进行热流辨识,可以有效改善温度阶跃和局部跳点对热流辨识结果的影响,提高热流辨识结果的准确度和可靠性。
-
公开(公告)号:CN106202807A
公开(公告)日:2016-12-07
申请号:CN201610589156.7
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: G06F17/5095
Abstract: 判别航天器身部激波/前缘类激波干扰发生条件及类型的方法,属于航天器气动热环境分析领域。该方法根据激波关系式建立了身部激波/前缘类激波干扰发生条件与飞行状态和气动外形的定量关系,对身部激波/前缘类激波干扰发生条件作出快速判别并给出干扰作用位置;建立了身部激波/前缘类激波干扰类型判别特征参数与飞行状态和气动外形参数的关联关系,根据不同类型身部激波/前缘类激波干扰流动结构特征,对干扰类型作出快速判别,本发明方法可大大缩减身部激波/前缘类激波干扰发生条件及类型的判别周期,降低判别难度,提高设计效率。
-
公开(公告)号:CN106202804A
公开(公告)日:2016-12-07
申请号:CN201610586987.9
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
CPC classification number: Y02T90/50 , G06F17/5095 , G06F17/5036 , G06F2217/80 , G06Q10/04
Abstract: 基于数据库的复杂外形飞行器分布式热环境参数预测方法,属于航天器热环境设计领域。该方法建立飞行器表面热流数据库,利用POD方法对数据库进行降阶处理,得到数据库的正交基向量,结合相应的基系数插值方法,能够快速沿弹道预测飞行器表面热环境参数。该方法能够真实的反映出复杂外形飞行器表面各点气动热环境空间分布特征及干扰特征,和数值结果对比表明,该方法能够大幅提高计算效率,并且不损失预测精度。通过沿弹道各点为防热温度场计算提供表面分布式热流,能够得到更加精细的温度分布,从而提高整个防隔热系统的设计水平。
-
公开(公告)号:CN110626519A
公开(公告)日:2019-12-31
申请号:CN201910791669.X
申请日:2019-08-26
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种降低对流动转捩影响的飞行器表面缺陷尺度控制方法,首先利用理论分析手段或地面试验手段对飞行器开展流动转捩研究,得出满足边界层转捩不受影响的表面缺陷尺度的约束范围;然后针对产生缺陷的部段开展气动加热、结构温度场和变形场联合仿真分析,从结构变形计算结果中提取得到飞行过程中产生缺陷的各部段热变形量数据;最后利用初始缺陷尺度抵消热变形量的策略,根据约束范围和热变形量数据设计初始应加工的缺陷尺度,确保飞行过程中实际缺陷尺度满足约束范围。本发明可以合理且有效的控制飞行器表面缺陷尺度,降低其诱发表面提前转捩的可能,确保飞行器热防护系统可靠工作。
-
公开(公告)号:CN106742060B
公开(公告)日:2019-06-18
申请号:CN201710002363.2
申请日:2017-01-03
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明公开了一种气动热与材料催化特性耦合效应的地面预示方法,包括:采用理论方法对不同材料表面催化特性条件下的材料表面热流进行分析;根据分析结果建立材料表面催化效应随材料表面催化复合系数变化的函数关系;基于飞行状态及气动外形对典型部位热环境进行工程评估,将典型部位热环境工程计算结果与材料表面催化效应随材料表面催化复合系数变化的函数关系相结合,实现飞行状态下飞行器表面热流响应历程的预示;采用传热学方法,实现飞行状态下飞行器内部温度响应历程的预示。通过本发明实现了对气动热与材料催化特性的耦合效应的准确描述,为气动热与材料催化特性耦合效应作用下的防隔热系统设计精细化设计提供了有力支撑。
-
公开(公告)号:CN107977491A
公开(公告)日:2018-05-01
申请号:CN201711117139.4
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 一种非稳态情况下飞行器空气舵缝隙的气动热评估方法,包括步骤如下:一、通过数值求解飞行器流场的N-S方程,获得飞行器外壁表面热流;二、对舵缝隙内是否存在非定常效应进行判断并相应处理;三、获得若干周期内舵缝隙区域特征点处定常方法的平均热流;四、获得若干周期内特征点处非定常方法的平均热流并和定常方法结果比较,根据情况相应处理;五、获得舵缝隙区域干扰因子,利用曲线拟合方法获得干扰因子随舵偏变化的分段解析函数曲线;六、将干扰因子的分段函数曲线嵌入到气动热工程计算程序,获得飞行器在设定弹道时间段的舵缝隙区域热环境结果。本发明在保证空气舵缝隙气动热评估结果可靠性的同时能够有效减小评估结果的冗余度。
-
公开(公告)号:CN106742060A
公开(公告)日:2017-05-31
申请号:CN201710002363.2
申请日:2017-01-03
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
CPC classification number: G06F17/5095 , G06F2217/80
Abstract: 本发明公开了一种气动热与材料催化特性耦合效应的地面预示方法,包括:采用理论方法对不同材料表面催化特性条件下的材料表面热流进行分析;根据分析结果建立材料表面催化效应随材料表面催化复合系数变化的函数关系;基于飞行状态及气动外形对典型部位热环境进行工程评估,将典型部位热环境工程计算结果与材料表面催化效应随材料表面催化复合系数变化的函数关系相结合,实现飞行状态下飞行器表面热流响应历程的预示;采用传热学方法,实现飞行状态下飞行器内部温度响应历程的预示。通过本发明实现了对气动热与材料催化特性的耦合效应的准确描述,为气动热与材料催化特性耦合效应作用下的防隔热系统设计精细化设计提供了有力支撑。
-
-
-
-
-
-
-
-
-