一种基于光栅光阀对互补的飞秒激光直写装置及方法

    公开(公告)号:CN117270327A

    公开(公告)日:2023-12-22

    申请号:CN202311100405.8

    申请日:2023-08-30

    Abstract: 本发明涉及一种基于光栅光阀对互补的飞秒激光直写装置及方法,所述装置包括按光路依次设置的飞秒激光光源、第一光栅光阀GLV、4F光学系统、第二光栅光阀GLV、成像系统、以及放置有样本的位移台;所述飞秒激光光源入射到第一光栅光阀GLV上,第一光栅光阀GLV出射的一级衍射光通过4F光学系统后垂直入射到第二光栅光阀GLV表面,然后通过成像系统将第二光栅光阀GLV出射的一级衍射光聚焦置样品处进行扫描刻写。与现有技术相比,本发明具有兼具高效率、任意复杂结构及灰度结构灵活刻写的优点。

    三维激光刻写方法、装置、计算机设备和系统

    公开(公告)号:CN116652393A

    公开(公告)日:2023-08-29

    申请号:CN202310572478.0

    申请日:2023-05-18

    Abstract: 本申请涉及一种三维激光刻写方法、装置、计算机设备和系统。所述方法包括:依次获取刻写对象每层对应的二维灰度图;基于所述二维灰度图获取每个刻写点的刻写图像数据;依次控制位移台移动至每行所述刻写点对应的起始位置并控制所述位移台按照指定程序移动,在所述位移台到达指定位置时,控制数字微镜基于对应的所述刻写点的所述刻写图像数据进行并行激光刻写操作。通过本申请,解决了相关技术中刻写效率较低,并且刻写质量较差的技术问题,通过移动位移台去除了拼接步骤,并通过数字微镜并行进行激光刻写,进而提高了激光刻写的效率和质量。

    一种利用千束独立可控PPI点阵进行高通量直写的装置

    公开(公告)号:CN114019766B

    公开(公告)日:2024-03-26

    申请号:CN202111266973.6

    申请日:2021-10-28

    Abstract: 本发明公开一种利用千束独立可控PPI点阵进行高通量直写的装置,该装置主要包含激发光和抑制光两路光,激发光路包含核心元件数字微镜阵列DMD、微透镜阵列MLA和连续变形镜DM,抑制光路包括核心元件空间光调制器SLM。本发明利用微透镜阵列MLA产生千束激发光点阵,利用高速连续变形镜DM矫正系统波前像差,实现点阵分布均匀性和光斑质量的优化,利用数字微镜阵列DMD对点阵的开关、强度进行独立调控,抑制光路通过空间光调制器SLM产生四束光,四束光在物镜焦平面干涉产生的点阵暗斑用于涡旋抑制光,与激发光点阵在物镜焦平面重合后形成千束PPI点阵,可实现大面积复杂三维结构的超分辨高通量灵活刻写。

    一种基于双光束的高通量超分辨三维刻写方法与系统

    公开(公告)号:CN116430687B

    公开(公告)日:2023-12-15

    申请号:CN202310698595.1

    申请日:2023-06-14

    Abstract: 本发明涉及一种超分辨激光纳米直写光刻技术,具体涉及一种基于双光束的高通量超分辨三维刻写方法与系统,该方法为,合束光平行入射数字微镜器件并经数字微镜器件反射后入射微透镜阵列,于微透镜阵列焦平面处形成聚焦点阵,使该聚焦点阵成像于双光束光刻胶表面形成激发光束与抑制光束重合的刻写点阵,对双光束光刻胶进行曝光;合束光由激发光束与抑制光束合束得到;通过调节数字微镜器件区域微镜的开关状态,调控刻写点阵中各点处的能量;通过调节抑制光束的能量,使刻写点阵中各点于中心区域形成光刻胶聚合促进,于外围区域形成光刻胶聚合抑制。与现有技术相比,本发明实现了高通量、超分辨、三维纳米结构的刻写,大幅提升刻写精度与效率。

    基于飞秒激光时空同步聚焦的线光场扫描刻写装置和方法

    公开(公告)号:CN117031884A

    公开(公告)日:2023-11-10

    申请号:CN202311021903.3

    申请日:2023-08-15

    Abstract: 本申请涉及一种基于飞秒激光时空同步聚焦的线光场扫描刻写装置和方法,所述装置包括:包括按光前进方向依次设置的飞秒激光光源、一维扩束系统、光栅光阀、成像系统和位移台;飞秒激光光源用于发射飞秒激光至一维扩束系统;一维扩束系统用于将飞秒激光的光斑扩束为一维线形光斑后垂直入射至光栅光阀的表面;光栅光阀用于对一维线形光斑进行调制并将得到的一级衍射光发射至成像系统;成像系统用于将一级衍射光在成像系统的物镜焦面上进行时空同步聚焦,输出线形光场对待刻写目标进行刻写。采用本装置能够结合飞秒激光和光栅光阀进行线扫描刻写,提升刻写精度,实现任意复杂结构大面积高速扫描刻写和大面积高均匀结构、连续灰度结构的快速加工。

    一种基于边缘光抑制阵列的并行直写装置和方法

    公开(公告)号:CN112859534B

    公开(公告)日:2023-09-26

    申请号:CN202011638382.2

    申请日:2020-12-31

    Abstract: 本发明公开一种基于边缘光抑制阵列的并行直写装置和方法,该装置可产生N×N强度独立可控的高质量PPI阵列,每个PPI刻写点由干涉点阵暗斑和激发光重合而成,具有高通量超分辨刻写的能力。装置主要包括两路光:一路光通过四光束干涉产生等强度等间距的光斑点阵,点阵暗斑用作涡旋抑制光;另一路光通过MLA产生N×N激发光点阵,同时通过SLM和DMD分别调控各激发光的位置和强度,实现涡旋光阵列与激发光点阵精密重合且刻写点大小独立可控。该装置与方法通过产生相同刻写点大小的PPI阵列,可进行高均匀度三维结构的高通量超分辨直写加工,控制刻写点大小使其具有特定分布,还可并行加工任意曲面结构,可应用于超分辨光刻等领域。

    一种可控脉冲展宽与延时的超分辨激光直写装置及方法

    公开(公告)号:CN113985707B

    公开(公告)日:2023-08-04

    申请号:CN202111241114.1

    申请日:2021-10-25

    Abstract: 本发明公开一种可控脉冲展宽与延时的超分辨激光直写装置及方法,该装置包括飞秒激光光源、二分之一波片、偏振分光棱镜、脉冲展宽器、能量调制器、相位板、直角棱镜、反射镜等部件。本发明将飞秒光源出射的飞秒光束分成两束光,对其中一束进行脉冲展宽与光强分布的调制,然后将两束光合束后入射到刻写系统,实现同波长的基于边缘光抑制的激光刻写。利用本发明的装置可以得到一束强度分布为高斯的飞秒光束和一束可调脉冲宽度、可调光强分布的光束,并且可以通过调控光程来精细调控分束后的两个光束达到刻写样品上的时间,精度可达皮秒量级,可用于高精度激光直写光刻系统。

    一种基于双光束的高通量超分辨三维刻写方法与系统

    公开(公告)号:CN116430687A

    公开(公告)日:2023-07-14

    申请号:CN202310698595.1

    申请日:2023-06-14

    Abstract: 本发明涉及一种超分辨激光纳米直写光刻技术,具体涉及一种基于双光束的高通量超分辨三维刻写方法与系统,该方法为,合束光平行入射数字微镜器件并经数字微镜器件反射后入射微透镜阵列,于微透镜阵列焦平面处形成聚焦点阵,使该聚焦点阵成像于双光束光刻胶表面形成激发光束与抑制光束重合的刻写点阵,对双光束光刻胶进行曝光;合束光由激发光束与抑制光束合束得到;通过调节数字微镜器件区域微镜的开关状态,调控刻写点阵中各点处的能量;通过调节抑制光束的能量,使刻写点阵中各点于中心区域形成光刻胶聚合促进,于外围区域形成光刻胶聚合抑制。与现有技术相比,本发明实现了高通量、超分辨、三维纳米结构的刻写,大幅提升刻写精度与效率。

    基于光镊微球的超分辨激光直写与实时成像装置及方法

    公开(公告)号:CN114077168A

    公开(公告)日:2022-02-22

    申请号:CN202210009224.3

    申请日:2022-01-06

    Abstract: 本发明涉及光学技术领域,具体公开了一种基于光镊微球的超分辨激光直写与实时成像方法和装置,包括激光器、准直扩束系统、空间光调制器、4f缩束系统、二向色镜、显微物镜、微球、直写基底、三维可控精密位移台、照明光源、照明模块及相机等,所述的激光器出射光经过扩束准直后入射到加载有相位全息图的空间光调制器上面,调制后的光斑经过4f缩束系统入射到显微物镜,在显微物镜焦面形成聚焦光斑阵列同时捕获多个微球,利用微球强聚焦特性配合相位全息图变化,在直写基底上面进行任意图案的高通量超分辨激光直写;同时,微球结合显微物镜可对超分辨激光直写结构进行实时成像,图像由相机采集,实现基于光镊微球的超分辨激光直写与实时成像。

    一种基于万束独立可控激光点阵产生的并行直写装置

    公开(公告)号:CN114019763A

    公开(公告)日:2022-02-08

    申请号:CN202111120476.5

    申请日:2021-09-24

    Abstract: 本发明公开了一种基于万束独立可控激光点阵产生的并行直写装置,装置主要包含四个相同光路,每个光路包含核心元件数字微镜阵列DMD和微透镜阵列MLA,用于产生千束独立可控刻写点阵,光路中DMD将有效像素区域等分成M×N个子阵列,一个子阵列对应一个子光斑,从DMD出射的M×N子光斑与MLA的M×N微透镜空间上重合后,产生M×N千束焦点阵列,并最终成像到物镜焦平面上,通过四个千束点阵的拼接,最终实现万束刻写点阵的产生,能够快速加工高质量复杂三维微结构,可应用于超分辨光刻等领域。

Patent Agency Ranking