-
公开(公告)号:CN115826214A
公开(公告)日:2023-03-21
申请号:CN202211480569.3
申请日:2022-11-23
Abstract: 本发明公开了一种基于共焦光路像素差分的焦面检测方法,该方法基于分别放置在共焦差分光路中的焦前和焦后位置上的两路图像传感器,通过将两路图像传感器获取的离焦光斑形状进行差分,结合后期图像处理,实现了焦面的实时探测跟踪与补偿。还公开了一种基于共焦光路像素差分的焦面检测装置,包括位于光学系统中心光轴上依次排布的光源、滤波准直装置、二分之一波片、偏振分光棱镜、四分之一波片、物镜、样品,以及与偏振分光棱镜共轴依次布置的会聚透镜、分光棱镜和两路图像传感器。本发明与现有的其他焦面检测方法相比,具有装置简单,抗干扰能力强的优点,能实现高精度焦面跟踪定位与补偿。
-
公开(公告)号:CN115598833A
公开(公告)日:2023-01-13
申请号:CN202211046913.8
申请日:2022-08-30
Abstract: 本发明提供了一种基于方形多模光纤高通量的三维激光直写方法及系统,本发明将由多个方形多模光纤组成的光纤阵列作为激光直写头,每一方形多模光纤均利用一空间光调制器对入射方形多模光纤的光场根据加载的计算好的相位图进行相位调制,在出射面实现聚焦,聚焦后的激光对待加工物体进行三维激光直写;其中,每一方形多模光纤对应的计算好的相位图通过设置的聚焦位置,利用闭环的迭代遗传算法进行优化获得,每一方形多模光纤出射激光的聚焦位置根据光纤阵列排列时的加工误差进行设置。利用方形多模光纤可以紧致排列的特点,可将系统拓展为多通道,继而实现多通道并行直写,直写效率进一步提高,解决了现有激光直写系统直写速度慢分辨率低等问题。
-
公开(公告)号:CN114077168B
公开(公告)日:2022-06-03
申请号:CN202210009224.3
申请日:2022-01-06
Applicant: 之江实验室
Abstract: 本发明涉及光学技术领域,具体公开了一种基于光镊微球的超分辨激光直写与实时成像方法和装置,包括激光器、准直扩束系统、空间光调制器、4f缩束系统、二向色镜、显微物镜、微球、直写基底、三维可控精密位移台、照明光源、照明模块及相机等,所述的激光器出射光经过扩束准直后入射到加载有相位全息图的空间光调制器上面,调制后的光斑经过4f缩束系统入射到显微物镜,在显微物镜焦面形成聚焦光斑阵列同时捕获多个微球,利用微球强聚焦特性配合相位全息图变化,在直写基底上面进行任意图案的高通量超分辨激光直写;同时,微球结合显微物镜可对超分辨激光直写结构进行实时成像,图像由相机采集,实现基于光镊微球的超分辨激光直写与实时成像。
-
公开(公告)号:CN113985708B
公开(公告)日:2024-02-13
申请号:CN202111247035.1
申请日:2021-10-26
IPC: G03F7/20
Abstract: 本发明公开了一种可连续像旋转调制的超分辨高速并行激光直写方法与装置。本发明利用空间光调制器产生多束刻写光与多束抑制光,抑制光与刻写光在空间上重合形成调制后的多光束。利用像旋转器对调制后的多光束排布方向进行旋转,使得多光束排布方向与转镜扫描方向连续可调,实现了五种不同的高速扫描策略。本发明通过引入抑制光,相较于现有双光子并行激光直写具有更高的分辨率。并通过不同的扫描策略,解决了现有系统由于扫描策略单一导致扫描效果与扫描速度不佳的问题。
-
公开(公告)号:CN116974155A
公开(公告)日:2023-10-31
申请号:CN202310982115.4
申请日:2023-08-07
IPC: G03F7/20
Abstract: 本发明涉及双光子刻写功率补偿模板构建方法及刻写功率调节方法,包括:在标准直写视场内将设定功率为P0的激光照射至光刻胶上产生艾里斑,获取艾里斑长度l,以确定标准直写视场中光刻胶的刻蚀深度b0;基于b0确定标准直写视场中对应光刻胶的刻蚀体积V0;获取标准直写视场中刻蚀体积为V0的光刻胶发出的标准荧光强度F0;基于F0=ΩV0确定Ω,Ω为单位体积光刻胶发出的荧光强度;对样本直写视场进行分割,以获得至少两个样本视场分区,获取第n个样本视场分区的面积Sn、激光设定功率Pn以及实际荧光强度为Fn';基于Ω、Sn以及Fn'确定第n个样本视场分区的实际刻写功率Pn';基于Pn'和Pn确定第n个样本视场分区的补偿系数Ψn;基于所有样本视场分区的补偿系数构件刻写功率补偿模板。
-
公开(公告)号:CN113985708A
公开(公告)日:2022-01-28
申请号:CN202111247035.1
申请日:2021-10-26
IPC: G03F7/20
Abstract: 本发明公开了一种可连续像旋转调制的超分辨高速并行激光直写方法与装置。本发明利用空间光调制器产生多束刻写光与多束抑制光,抑制光与刻写光在空间上重合形成调制后的多光束。利用像旋转器对调制后的多光束排布方向进行旋转,使得多光束排布方向与转镜扫描方向连续可调,实现了五种不同的高速扫描策略。本发明通过引入抑制光,相较于现有双光子并行激光直写具有更高的分辨率。并通过不同的扫描策略,解决了现有系统由于扫描策略单一导致扫描效果与扫描速度不佳的问题。
-
公开(公告)号:CN112596349B
公开(公告)日:2024-01-19
申请号:CN202110046632.1
申请日:2021-01-14
IPC: G03F7/20
Abstract: 本发明公开一种基于多点阵产生和独立控制的双光子并行直写装置及方法,主要包含三个核心元件:数字微镜阵列DMD、空间光调制器SLM和微透镜阵列MLA,DMD将有效像素区域等分成N×N个单元,一个单元对应一个光斑,对DMD每个单元包含的m×m个微镜进行独立开关,实现各单元光斑强度和均匀度的独立调控;SLM将有效像素区域等分成N×N个单元,并与入射的各单元光斑一一对应并独立进行相位控制;MLA用于生成焦点阵列,其微透镜数N×N决定了点阵的数量,该点阵随后经凸透镜和物镜成像到物镜焦平面上进行加工,该装置与方法具有灰度光刻的功能,能够快速加工任意形状且高均匀度的曲面结构及真三维微结构,可应用于超分辨光刻等领域。
-
公开(公告)号:CN115639729B
公开(公告)日:2023-07-18
申请号:CN202211053614.7
申请日:2022-08-30
Abstract: 本发明提供了一种基于全息相位分束的光纤并行激光直写方法和系统,本发明将一水平偏振方向的激光入射至空间光调制器的液晶面元,所述的空间光调制器加载不同的全息相位图实现对入射光束的分束并调整分束后各个子光束的位置,从而实现良好地耦合进光纤阵列。光纤阵列通过光开光模块实现每一路光的开关。通过每路光的开关以及三维位移台的移动,实现三维大面积的微纳结构直写,本发明的直写效果更加丰富,直写效率进一步提高,有效解决了现有激光直写系统直写速度慢分辨率低等问题。
-
公开(公告)号:CN115639729A
公开(公告)日:2023-01-24
申请号:CN202211053614.7
申请日:2022-08-30
Abstract: 本发明提供了一种基于全息相位分束的光纤并行激光直写方法和系统,本发明将一水平偏振方向的激光入射至空间光调制器的液晶面元,所述的空间光调制器加载不同的全息相位图实现对入射光束的分束并调整分束后各个子光束的位置,从而实现良好地耦合进光纤阵列。光纤阵列通过光开光模块实现每一路光的开关。通过每路光的开关以及三维位移台的移动,实现三维大面积的微纳结构直写,本发明的直写效果更加丰富,直写效率进一步提高,有效解决了现有激光直写系统直写速度慢分辨率低等问题。
-
公开(公告)号:CN113568279A
公开(公告)日:2021-10-29
申请号:CN202110802368.X
申请日:2021-07-15
IPC: G03F7/20
Abstract: 本发明公开了一种基于多模光纤阵列输入光场调制的超分辨直写式光刻系统,采用两个空间光调制器分别对两束不同波长的入射光进行预调制,使两束光通过同一根多模光纤出射后,在距离光纤出射端面一定远处的平面上聚焦。从多模光纤出射的圆形激发光斑和环形抑制光斑同心且环形光斑覆盖住圆形光斑的大部分外围区域。本发明配合特制的负性光刻胶使用,通过激发光和抑制光同时作用于光刻胶,即可使实际被固化的光刻胶体素尺寸小于衍射极限的限制。通过改变空间光调制器所加载的相位图,无需机械位移装置即实现在某一平面小区域内的逐点扫描式光刻。通过多路复用上述结构,实现平面大区域的逐点扫描;再结合z方向位移台,实现三维立体结构的光刻。
-
-
-
-
-
-
-
-
-