-
公开(公告)号:CN108429649A
公开(公告)日:2018-08-21
申请号:CN201810244277.7
申请日:2018-03-23
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L12/24
CPC classification number: H04L41/0631 , H04L41/064
Abstract: 本发明公开了一种基于多次单类型采集结果的综合异常判断系统,涉及网络预警技术领域。所述系统包括:阈值生成单元和异常判断单元;所述阈值生成单元,在从被采集系统上获取到的采集数据的基础上,计算判断阈值;所述异常判断单元,在所述判断阈值和所述采集数据的基础上,判断被采集系统运行是正常还是异常。本发明所述系统对采集到的数据进行多种方式进行判断,从而在不接触被监测系统后台日志或硬件数据的情况下准确识别出被检测系统的运行状况,解决了因使用平均值计算抗干扰性太弱,固定阈值判断性能太差,阈值波动范围设置方案单一且低效的问题。
-
公开(公告)号:CN106503859A
公开(公告)日:2017-03-15
申请号:CN201610963409.2
申请日:2016-10-28
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出一种基于在线社会关系网络的消息传播预测方法及装置,涉及社交媒体及大数据技术领域,该方法包括步骤1,对于一条消息d,获取其发出后在[0,T]时间段内,用户对其关注行为到达的时间序列;步骤2,对所述时间序列进行建模,对建模生成的模型进行学习,训练出所述模型的模型参数,根据所述模型参数,获取消息流行度预测函数。本发明能够应对数据涌发现象;通过MAPE对比,该方法准确率更高;形式灵活,可以应用到其他应用场景。
-
公开(公告)号:CN106168969A
公开(公告)日:2016-11-30
申请号:CN201610524367.2
申请日:2016-07-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F17/3089
Abstract: 本发明提供一种信源重要度的评级方法及评级系统,评级方法包括:步骤1,计算信源所属网站的网站重要度值W1;步骤2,计算信源在所属行业的行业重要度值W2;步骤3,预设定网站重要度权重值C1和行业重要度权重值C2;根据下式计算得到信源重要度值M:信源重要度值M=网站重要度值W1*网站重要度权重值C1+行业重要度值W2*行业重要度权重值C2;步骤4,根据信源重要度值M对信源进行重要度评级,并输出信源重要度评级结果。优点为:本发明能够对信源进行客观、科学合理、有效实用的信源重要度评级。
-
公开(公告)号:CN106126605A
公开(公告)日:2016-11-16
申请号:CN201610453205.4
申请日:2016-06-21
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明公开了一种基于用户画像的短文本分类方法。本方法为:1)基于用户发出的短文本数据生成对应用户的用户画像;其中,用户ui的用户画像为用户ui属于类别ci的值;2)采用分类器对该用户ui的短文本TS进行分类,得到该短文本TS所属类别的可能性F={f1,...,fi,...,fm};3)根据用户ui的用户画像与F={f1,...,fi,...,fm}计算该短文本TS属于各类别的值,选出最大的类别结果作为该短文本TS的类别标签。本发明大大增加了分类的准确率。
-
公开(公告)号:CN107633044B
公开(公告)日:2021-08-06
申请号:CN201710827984.4
申请日:2017-09-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于热点事件的舆情知识图谱构建方法,属于自然语言处理领域;首先实时获取微博文本,对每个微博文本进行处理,构建文本簇,计算每个文本簇所属的话题类别,按类别识别每个簇中的热点事件,统计每个热点事件的多维属性;识别参与热点事件讨论的重要人物和机构,并获取重要人物和机构的多维属性;最后构建事件、人物、机构的多维属性体系及关系类型,以事件、人物、机构为实体,事件、人物、机构之间的关系为关联,构建舆情知识图谱。本发明能够从多个维度对热点事件、人物、机构进行刻画,实现对热点事件、人物、机构的全方位解析;并根据实际需求,设置不同话题类别的权重,实现不同话题的舆情知识图谱构建。
-
公开(公告)号:CN108804594A
公开(公告)日:2018-11-13
申请号:CN201810523561.8
申请日:2018-05-28
Applicant: 国家计算机网络与信息安全管理中心 , 北京天润基业科技发展股份有限公司
IPC: G06F17/30
Abstract: 本发明涉及一种新闻内容全文检索引擎的构建方法及装置,该方法步骤如下:获取带有实时访问信息的实时网站日志;获取带有新闻热度评论信息的新闻网站的数据;对所述实时网站日志和所述新闻网站数据分类;对分类后的所述新闻网站数据进行处理、索引并存储;获取新闻网站数据中国的新闻元信息并存储;获取新闻网站数据中的热度信息进行存储,并对新闻网站数据中的热度信息统计。本发明在查询性能、索引空间和构建性能方面实现了合理的平衡;考虑到统计数据随时间变化的特性,动态更新索引结果;提高了系统的健壮性;提高统计数据与文本数据的复合查询性能。
-
公开(公告)号:CN108628828A
公开(公告)日:2018-10-09
申请号:CN201810347840.3
申请日:2018-04-18
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明一种基于自注意力的观点及其持有者的联合抽取方法:S1.构建提取观点及其持有者的语料集;S2.识别包含观点的语句;S3.联合抽取观点及其持有者。本发明优点:1、文本分类模型避免了抽取出的句子不包含观点的情况;2、观点及其持有者联合抽取模型摆脱了词性标注、命名实体识别和句法依存分析等自然语言处理环节,避免这些环节出现误差对模型提取效果的影响,且该模型有很高灵活度和覆盖面;3、本发明包含构建提取观点及其持有者的语料集,识别包含观点的语句,联合抽取观点及其持有者。4、本发明在双向LSTM的基础上使用self-attention有效结合两者优点,使词语序列的表示语义更丰富,训练的模型准确率更高。
-
公开(公告)号:CN106909637A
公开(公告)日:2017-06-30
申请号:CN201710079050.7
申请日:2017-02-14
Applicant: 国家计算机网络与信息安全管理中心 , 北京蓝光汇智网络科技有限公司
IPC: G06F17/30
CPC classification number: G06F17/30861 , G06F17/3061
Abstract: 本发明公开了一种微信公众号的影响力分析方法,包括如下步骤:步骤一、采集某一微信公众号下设定时间内发布的m篇文章中每篇文章的阅读数αi和点赞数βi,并计算阅读数和点赞数的转化率k=阅读总数/点赞总数;步骤二、当微信公众号下某篇文章的阅读数为100000+时,利用αx=k*βx计算得到文章的阅读数,其中αx为篇文章阅读数,βx为文章点赞数,设置单篇文章阅读数1×107为上限;步骤三、依据如下公式计算微信公众号的影响力权重:η为微信公众号的权威性权重;以用于对微信公众号发布信息的管理及对微信公众号的影响力的分析。本发明还公开了一种微信公众号的影响力分析系统。本发明极大地节省了人工成本,大幅度提高公众号影响力的分析效率。
-
公开(公告)号:CN106227766A
公开(公告)日:2016-12-14
申请号:CN201610559551.0
申请日:2016-07-15
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
CPC classification number: G06F16/951
Abstract: 本发明公开了一种大数据驱动的选举舆情预测方法,属于数据挖掘领域。具体为:首先,根据选举国家或地区的互联网网路使用报告和地区网站排名,挑选出大数据信息源;再对每一类信息源进行分析,构建民意预测指标;然后融合提取出的多源预测指标,形成当前互联网民众支持率;进而收集民调报告,融合报告中各年龄段人群对候选人的支持率,形成线下民调支持率值;考虑选举国家或地区人口结构构成和网民年龄分布,融合候选人互联网支持率值与线下民调支持率值,运用移动平均方法,预测下一时间节点候选人支持率值,预测结果以日频度更新。本发明具有数据源广泛、预测周期短、实时性强等特点,在舆情监控和观点分析等领域有重要的应用价值。
-
公开(公告)号:CN105893481A
公开(公告)日:2016-08-24
申请号:CN201610187149.4
申请日:2016-03-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F17/30
Abstract: 本发明提供一种基于马尔可夫聚类的实体间关系消解方法,包括:计算K个实体中任意两个实体之间的语义相似度;根据实体间的语义相似度构造赋权图G;构造状态转移矩阵M;在状态转移矩阵M上执行马尔科夫聚类算法,得到多个关系簇;其中,每个簇代表一系列语义相近似的实体。本发明提供的基于马尔可夫聚类的实体间关系消解方法具有以下优点:提出了融合词法和语义的相似度计算方法,然后给出了基于马尔科夫图聚类的关系聚类方法。该方法与层次聚类方法相比,聚类纯度指标有了一定提高,还具有计算过程简单快速的优点。
-
-
-
-
-
-
-
-
-